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B'. TECHNICAL SECTION~

I. Abstract

-' The overall objective of this proposal is to investi-
gate the robustness to departures from independence of methods
currently in use in reliability studies when competing failure
modes or competing causes of failure associated with a single
mode are present in a series system. The first specific aim
is to examine the"error one makes in modeling a series system
by a model which assumes statistically independent component
lifetimes when in fact the component lifetimes follow some
multivariate distribution. The second specific aim is to assess
the effects of the independence assumption on the error in

-. estimating component parameters from life tests on series
systems. In both cases, estimates of such errors will be deter-
mined via mathematical analysis and computer simulations for
several prominent multivariate distributions. A graphical dis-
play of the errors for representative distributions will be
made available to researchers who wish to assess the possible
erroneous assumption of independent competing risks. A third
aim is to tighten the bounds on estimates of component relia-
bility when the risks belong to a general dependence class of
distributions (for example, positive quadrant dependence, posi-
tive regression dependence, etc.).., Major decisions involving
reliability ptudies, based on competing risk methodology, have
been made in the past and will continue to be made in the future.
This study will provide the user of such techniques with a
clearer understanding of the robustness of the analyses to de-
partures from independent risks, an assumption commonly made
by the methods currently in use.

.... ..
.;.1
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II. Specific Objectives

The overall objective is to investigate the robust-
ness to departures from independence to methods currently in
use in reliability studies when competing failure modes or com-
peting causes of failure associated with a single mode are
present in a series system. We shall also refer to such com-
petitive events as competing risks. The approach will be through
the investigation of certain aspects of specific parametric multi-
variate distributions or by classes of distributions which are
appropriate in reliability analyses when there are competing
risks present.

The specific objectives are:

1) to assess the error incurred in modeling system
life in a series system assumed to have indepen-
dent component lifetimes when in fact the com-
ponent lifetimes are dependent.

2) to assess the error in estimating component param-
eters (i.e., component reliability, mean com-
ponent life, etc.) in a series system employing
either parametric or nonparametric models which
assume independent component failure times when
in fact the lifetimes are dependent and follow-
some plausible multivariate distribution.*

3) to derive bounds on component reliability when
the failure modes are dependent and fall in a
particular dependence class (e.g., positive quad-
rant dependence, positive regression dependence,
etc.).

4) to develop tests of independence, based on data
collected from series systems, by making some
restrictive assumption about the structure of the
systems. **

• A plausible parametric multivariate distribution will be
one that satisfies one of the following conditions:

i) the distribution of the minimum of the component
failure times closely approximates widely accept-
ed families of system life distributions.

or ii) the marginal distributions closely approximate
the distributions of component failure times inthe absence of other failure modes.

*This objective has been added to the original objectives be-
cause it answers a natural question raised by our preliminary
investigation.

.'
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I!.- ntroduction to Problem. and S.igificance of Study

Alviz Wi g (3:978) in an editorial comnent in the"
published predings" of a workshdp" on Environmental Biologi-
cal Hazards and Competing Risks noted that 'the question Of
comVpet9ing risks will notv quietly, go away: corrections for .com-
pet4ig risks should be applied routinely to data." The problem
of c6peting.risks comonly arises in .a wide range of experi-
mental it uations. Although we shall confine our attention
in the following discussion to those situations involving
series systms" in which *competing failure modes or competing
causim of failure" associated with a single mode are present,
it is certainly true that we might just- as easily speak of
Clinical trials, 'animal experiients, or other -meMicaland bio-

"ical studies where competing events interrupt our study of
the'Imin event of interest (cia. La.gokos (1979)).

Consid= elW c or mechanical. systems, such as
sate3lite 4 equpment, computers, airc=aft, missiles
and other weaponxy consisting of .several components in series.
Usually each copnent will* have a rand=m life length and the

4fe *of the entire system will end with the failure of the
shoxten. lived component, We will examine two situations more
closely in which competi.g.risks play a vital role.

- First, suppose we are']attempting to evaluate system life
from knowledge of the individual component lifetimes. Such
an eval2Ratiai will utili4ze either an -analysis invol:Ving math -
ematical statistics or- a computer simulation.: At a recent
conAee o.'on Modeling and Sizlation, McLean (1981) presented
a schie to simulate'the life of a-missile which consisted of
many major- components in series,- The failure distribution asso-
ciateod with eachcopent was assumed to be kcnown (usually
ex p ta or We l.) !o arrive at the system -ailure dis-
tribtion, the components -were. assumed to act independent.y of
each "abher. Realistically, this may or may not be the case.
Uf the coponnt lifetimes were dependent for any reason, thi

c!mputed system failure distribution (as well as its subsequent
such 'as system mean 1le and system reliability'for

a s p ed time) would only crudely approximate the true
distribution. The first specific aim of this proposal is to
ascertain the eror incurred in modeling system life in a
series system assumed to have independent component lifetimes
(i.e., risks) when, in fact, the risks are dependent.

Second, suppose we wish to evaluate some aspect of the
distribution of a particular failure mode based on a typical

V life test of a series system. The response of interest is the
time until failure of a particular. mode of interest. Frequently
this response will not be observable due to the occurrence of
some other event which precludes failure associated with the
mode of interest. We shall tem such cmpeting events which
interrupt our study of the maizi failure modes of interest as
competing risks.
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Competing risks arise in such reliability studies when

1) the study is teminated due to a lack of funds or the
pre-detemiLned period of observation has expired
(Type I censoring).

2) the study is terminated due to a pre-determined number
of failures of the particular failure mode of interest
being observed (Type II censoring).

3) some systems fail because components other than the
one of interest malfunctio.

4) the component of interest fails from some cause other
than the one of interest.

In all four situations, one may think of the main event of
interest as being censored, i.e., not fully observable. In the
first two situations, the time to occurrence of the event of
interest shonld be inde.pendent of the censoring mechanism. In
such instances, the methodology for estimating relevant reliabili-
ty probabilities has received considerable attention (cf. David
and oeschberger (1978), Kalbfeish and Prentice (1980), Elandt-
Johnson and Johnson (1980), Mann, Schafer, Singpurwalla (1974)
and Barlow* and. Proschan (1975) for references and discussion)'-
In the third situation, the time to failure of the component of
interest may or may not be independent of the failure times of
,other co ponents in the system. For example, there may be

ommon environmental factors such as extreme temperature which
may -affect the l4fetime of several components. Thus the question
of dependent'competing risks is raised. A similar observation
may be made with respect to tho fourth situation, viz., failure
times associated-with different failure modes of a single com-
ponent may be dependent. For a very special type of dependence,
the-models discussed by Marshall-Olkin (1967), Langberg, Proschan
and Quinzy (1978), and Langberg, Proschan, and Quinzy (1981)
allow one to convert. dependent models into independent ones.

if no assumptions whatever are made about the type of*
dependence between the distribution of potential failure times,
there appears to be little hope of estimating relevant component
pameter. -In some situations, one may be appreciably misled
(cf. Tsiatis (1975), Peterson (1976)). However, as Easterling
(1980) so clearly points out in his review of Birnbaum's (1979)

moaph

Othere seems to be a need for some robustness
studies. How far might one be off, quantita-
tively, if his analysis is based on incorrect
assumptions?*

The second specific aim will address this important
issue. First if a specific parametric model which assumes

-. N



7

Moeschberger, Melvin L.

independent risks has been used in the analysis, it would
be of interest to know how the error in estmation-is
affected by this assumption of independence. That is, if
independent specific parametic distributions are assumed
for the failure times associated with different failure
nodes when we really should use a bivariate (or multivariate)
distribution, then what is the .magitude of the- error in
estimatinq..component parameters? Secondly, one maywish to
allow for a less stringent type of model assumption, and ask
the same question with regard to the estimation error. That
is, if a nonparametric analysis is performed, assuming in-
dependent risks, when some types of dependencies may be
present, then what is the magnitude of the estimation error?

The third specific aim will attempt to obtain bounds on
the component reliability when the failure times belong to
a broad dependence class ie.g., association, positive quadahnt.
dependence, positive regression dependence,. etc.). More
details will be presented in the methods section.'

In mry, competing risk analyses have been perfo=-d
in the past and will continue to be performed in the future.
This study will provide the user of such techniques with a
clearer understanding of the robustness to departures from.
independent risks, .an assumption which most of the methods
currently in use assume.

%

".
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IV. Progress Report on Third Year's Work

A summary of the first and second year's work is reported in the annual reports

dated October 26th 1983 and October 26th 1984 respectively. We believe that during the

past three years we have made substantial progress in dealing with the objectives as

outlined on page 4. In addition to the papers and articles referred to in the first two

annual reports, we would like to mention some of the more recent work.

First, the recently published paper which investigates the problem of improving the

product-limit estimator of Kaplan and Meier (1958) when there is extreme independent

right censoring is presented in Appendix A. This paper looks at several techniques for

completing the product limit estimator by estimating the tail probability of the survival

curve beyond the largest observed death time. Two methods are found to work well for a

variety of underlying distributions. The first method replaces those censored

observations larger than the biggest death time by the expected order statistics,

conditional on the largest death, computed from a Weibull distribution. The WeibuUli is

chosen since it is known to be a reasonable model for survival in many situations.

Parameters of the model are estimated in several ways, but the method of maximum

likelihood seems to provide the best results. The second method replaces the constant

value of the product limit estimator beyond the last death time by the tail of a Weibull

survival function. Again parameters are estimated by a variety of methods with the

maximum likelihood estimators performing the best.

Second, a paper which obtains bounds on the component reliability, based on data

from a series system, for the Oakes (I 982) model has been revised. Since this model has

the same dependence structure as the random effects model with w having a gamma

distribution, these bounds are good for a general class of distributions. The bounds,

F.4 which are determined by specification of a range of coefficients of concordance, are

found by salving a differential equation in the observable system reliability and crude life

on one hand and the unobservable component survival function on the other hand. This

revision is reproduced in Appendix B.

"' ' ' ' i "" ,. ", . " " " ,' l' "" " '-',+ w+ '. ' ,," ,, w..." ."''" ,, w" .. -. . -" . -..... .- -,... , "" - .-" . .-" .-. ,, .-%-.,,%
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Third, we have submitted an overview paper for publication which summarizes

some of the work performed during the past three years. The results of this paper were

presented in an invited talk to the Eastern North American Region of the Biometrics

Society at Raleigh, North Carolina in the Spring of 1985. (See Appendix C for a copy of

this paper.)

Finally, a paper has been developed which discusses some general properties of a

random environmental stress model. Estimation of parameters under the Gamma stress

model is considered, and a new estimator based on the scaled total time on test

transform is presented (See Appendix D). Part of the results in this paper were presented

at the International Statistical Institute meeting in Amsterdam in August, 1985. A copy

of that contributed paper is found in Appendix E.

V. Methods

We refer to pages 8-52 of the original proposal for a discussion of the general

methodology.

.,4..% . - ' -. - ' . ' , . * I - " . . - - - - . . ,_ . . . . . . . .

.4,. ,,'-'; - '.". ' ,_ .-. " .' r " ., . .-. ""''''''' ..-.' .. ' ... -'''- -. ,. ', """.. ", z "-" - . " - . , ." - ,"



10

Moeschberger, Melvin L.

LITERATURE CITED

AmedA.N., Langberg, N.A., Leon, R.V. and Proschan, F. (1978).
Two cncets of positive dependence, with applications in
multivariate analysis. Statistics Report No. M486, Florida
State University, Tallahassee.

Barlow, R.E. and Proschan, F. (1975). Statistical Theory of
Reliability and Life Testing - Probability Models. Holt,

0Rinehar and Winston, Inc., New York.

Basu, A.P. and Klein, J.P. (1982). Some recent results in competing
risks. Survival Analysis. Crowley and Johnson, Editors, 216-229.

BezmanS.N. (1963. Notes on extreme values, competing risks, and
semi-Miarkov processes. Ann. Math. Statist. 34, 1104-1106.

Biznbaum, Z.W. (1979). On the Mathematics of Competing Risks.
U.S. Dept. of HEW. Publication No. 79-1351.

Chiang, C.L. (1968). Introduction to Stochastic Processes in
Biostatistics. Wiley, New York.

Cox, D.R. (1962). Renewal Theory. Methuen, London.

David, N.A. (1974). Parametric approaches to the theory of competing
risks. Pp. 275-290 in: Proschan and Serfling (1974).

David, H.A. and oeschberger, M.L. (1978). Theory of Competing
Risks. Griffin, London.

Easterling, R.G. (1980). Book review of Z.W. Riznbaum monograph.
Technmetrics 22: 131-132.

Elandt-Johnson, R.C. and Johnson, N.L. (1980). Survival Models
and Data Analysis. Wiley, New York.

Fisher, L. and Kanarek, P. (1974). Presenting censored survival
data when censoring and survival times may not be independent.
Reliability and Biometry, Statistical Analysis of Lifelength.
Siam, 303-326.

Fishman, G.S (1973). Concepts and Methods in Discrete Event
Digital Simulation. iiley, New York.

Friday, D.S. and Patel, G.P. (1977). A bivariate exponential model
with applications to reliability and computer generation of random
variates. Theory and Applications of Reliability, Vol. I. C.P.
Tsokos and I.N. Shlimi, Editors, 527-548.

Gail, M. (1975). A review and critique of some models used in
competing risk analysis. Biometrics 31, 209-222.

% .- . - . . . - -



Gibbons, J.D. (1971). Nonparametric Statistical Inference.
McGraw-Hill Book Company, New York.

Gumbel, E.J. (1960). Bivariate exponential distributions. J. Amer.
Statist. Assoc. SS: 698-707.

Heel, D.G. (1972). A representation of mortality data by competing
risks. Biometrics 28, 475-488.

Johnson, N.L. and Kotz, S. (1972). Distributions in Statistics:
Continuous Multivariate Distributions. Wiley, New York.

Kalbfleisch, J.D. and Prentice, R.L. (1980). The Statistical
Analysis of Failure Time Data. Wiley, New York.

Kaplan, E.L. and Meier, P. (1958). Nonparamcatric estimation
from incomplete observations. J. Amer. Statist. Assoc. 53,
457-481.

Klein, J.P. and Basu A.P. (198.1). Replacing Dependent Systems
by Independent Systems in a Competing Risk Framework with
Applications . Submitted for publication.

Kotz, S. (1974). Multivariate Distributions at a Cross Road
in Statistical Distributions in Scientific Work VI. Reidell
Publishing Co., Boston, 247-270.

Lagakos, S.W. (1979). General right censcring and its impact on
the analysis of survival data. Biometrics 35: 139-156.

4 Langberg, N., Proschan, F. and Quinzi, A.J. (1978). Converting
Dependent Models into Independent Ones, Preserving Essential
Features Ann.Prob., 6, 174-181.

Langberg, N., Proschan, F. and Quinzi, A.J. (1981). Estimating
Dependent Lifelengths with Applications to the Theory of
Competing Risks . Ann.-Statist. 9:157-167.

Lee L. and Thompson, W.A., Jr. (1974). Results on failure time and
-:, pattern for -the series system. Pp 291-302 in: Proschan and Serfling

..- : (1.974).

Mann, N.R. and Grubbs, F.E. (1974). Approximately optimum con-
fidence bounds for system reliability based on component test data.
Technometrics 16:335-347.

Mann, N.R., Schafer, R.E., and Singp=xrala, N.D. (1974) Methods
for the Statistical Analysis of Reliability and Life Data, Wiley, .y.

Marshall, A.W. and Olkin, I. (1967). A Multivariate Exponential
Distribution J. Amer. Statist. Assoc. 66, 30-40.

McLean, T.J. (1981). Customer's Risk Evaluation. Paper presented to
Modeling and Simulation Conference. Pittsburgh, Pa.

Mendenhall, W. and Lehman, E.H., Jr. (1960). An approximation to
__the negative moments of the positive hbial useful in life

testing. Technometrics 2:227-242.



12.

Moeschberger, Melvin L.

Miller, D.R. (1977). A note on independence of multivariate life-
times in competing risks. Ann Statist.S: 576-579.

Moeschberger, X.L. and David, H.A. (1971). Life tests under com-
peting causes of failure and the theory of competing risks.
Biome"trics 27, 909-933.

Moeschberger, M.L. (1974). Life tests under dependent competing
causes of failure. Technometrics 16, 39-47.

Oakes, D. (1982). A model for association in bivariate survival
data. J. Roy. Statis. Soc. 44:414-422.

Peterson, A.V., Jr. (1976). Bounds for a joint distribution function
with fixed sub-distribution functions: Application to competing
risks. Proc. Nat. Acad. Sci. 73: 11-13.

Peterson, A.V., Jr. (1978). Dependent competing risks: bounds for

net survival functions with fixed crude survival functions.
Environmental International 1: 351-355.

Prentice, R.L., Kalbfleisch, J.D., Peterson, A.V., Jr., Flournoy,

N., Farewell, V.T., and Breslow, N.E. (1978). The analysis of -

failure times in the presence of competing risks. Biometrics 34:
541-554.

Proschan, F. and Serfling, R.J. (Eds.) (1974). Reliability and
Biometry: Statistical Analysis of Lifelength. Society for
Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

Rose, D.M. (1973). Investigation of dependent competing risks.
Ph.D. dissertation, University of Washington.

Thompson, W.A., Jr. (1979). Technical note: competing risk pre-
sentation of reactor safety studies. Nuclear Safety 20: 414-417.

Tsiatis, A. (1975). A nonidentifiability aspect of the problem
of canpeting risks. Proc. Nat. Acad. Sci. 72, 20-22.

Tsiatis, A. (1977). Nonidentifiability problems with the reliability
approach to competing risks. Technical Report No. 490, University
of Wisconsin-Madison.

Weinberg, Alvin (1978). Editorial. Environmental International
1:285-287.

'p



13.

APPENDIX A

p.?..N

S .

. L ~ h ~ '' -. .~* t 1 *~- * j4 V ~ P~ .. 4 .-.- * V. 2' * ~ !



Unclassified
SECURITY CLASSIFICATION OF T1IS PAGE (WhEm D.Ee Enue,e__ READ INSTRUCTIONSREPORT DOCUMENTATION PAGE 1"FORZ COMIPLTING FOR

1. REPORT NUMBER Z. GOVT ACCESSION NO I. 3CCIPIENT'$ CATALOG HUMOER

4. TITLE (and Sb#11le) S. TyPE OF REPORT a PCRIOO COVERIO

A Omparison of several methods of estimating the An0/ua3

survival function w there is etre right 10/1/94 to 10/31/85
censoi ~ ring 6. PERFORMING ONG. REPORT MUlmeiR

714837 MFN 763265
7. AUTMOR(4) 0. CONTRACT OR GRANTr NUMUOEPa)

M.L. Moeschberger and John P. Klein AFSOR -82-0307

9. PERFORMING ORGAMIZATIOM NAMIK AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
eaota AREA & WORK UNIT NUMsensThe a-hio State Uiverity Rsearch Fbudatic

1314 Kinnear lcad
0lumbius, Ohio 43212

11. CONTROLLING OFFICE NAME ANC AODRUS 12. REPORT OATE

AEXOSR-NM November 26, 1985
Building 410 Is. wuumgm Of P^GES
Bolling AFB Washincitc D.C. 20332 7
14. MONITORING AGENCY NAME & AODRES.SIkif 4111mrewt gm Cemnuell Oftice) IL SECURITY CLASS. (of le t -mm

AEGR-FIP
Buildin 410 U11CIAsI. ed
Boi A E Ili. 09CL.AMPICATION/ DOWNGRADING
Washingt=I DC 20332 sc.4Eu.,
I. DISTRIS1UTION STATEMEiNT (of this Rupee)

Distnbticn unlimited; appzved for public release.

17. DISTRIDUTION STATIMENT (oefe o ma.tts In Sloe If 4ftfwe Rqmo

IL. SUPPILEMENTARY NOTES

19. KEY WORDS (CAeM em es, aide it noeees aIm ~11F &V block mmb)

Adju.ld Kaplan.-Ler Survival Es tjiti c, Bias of Survival Function,
Life-Tesing, Survival Analysis, Fight Censoring

20. AISTRACT (Ca1i00u an ,wee side it neeeeemy moIdt40 b bleck nunbee)

Mien there is extriee censoring an the right, the Kaplan-Maier product limit
estimator is knownto be a biased estimator of the survival function. Several
mifications of the Kaplan-Mier estimator are exuained and clpared with
respect to bias and ean squared error.

DO I j0. 1473 EooOFINovisis onsLEE Unclassified

USECURITY CLASSIFICATIOM OF THIS PAGE fWhon Date jatOeeE

L 9, %i .1



BIoMUrIcs 41, 253-259
Match 1985

A Comparison of Several Methods of Estimating the Survival
Function when There Is Extreme Right Censoring

M. L Mouulhbrgr and John P. lein 2

Departments of Preventive Medicine' and Statistics2, The Ohio State University,
320 West 10th Avenue, Columbus, Ohio 43210, U.S.A.

SUMMARY

When there is extreme censorng on the right, the Kaplan-Meier product-limit estimator is known to
be a biased estimator of the survival function. Several modifications of the Kaplan-Meier estimator
are examined and compared with respect to bias and mean squared error.

I. bowtrd

In human and animal survival studies, as well as in life-testing experiments in the physical
sciences, one method of estimating the underlying survival distribution (or the reliability
of a piece of equipment) which has received widespread attention is the Kaplan-Meier
product-limit estimator (Kaplan and Meier, 1958).

For the situation in which the longest time an individual is in a study (or on test) is not
a failure time, but rather a censored observation, it is well known that there are many
complex problems associated with any statistical analysis (Lagakos, 1979). In particular,
the Kaplan-Meier product-limit estimator is biased on the low side (Gross and Clark,
1975). In the case of many censored observations larger than the largest observed failure
time, this bias tends to be worse. Estimated mean survival time and selected percentiles, as
well as other quantities dependent on knowledge of the tail of the survival function, will
also exhibit such biases.

A practical situation which motivates this study is a large-scale animal experiment
conducted at the National Center for Toxicological Research (NCTR), in which mice were
fed a particular dose of a carcinogen. The goal of the experiment was to assess the effects
of the carcinogen on survival and on age-specific tumor incidence. Toward this end, mice
were randomly divided into three groups and followed until death or until a prespecified
group censoring time (280, 420, or 560 days) was reached, at which time all those still alive
in a given group were sacrificed. Often there were many surviving mice in all three groups
at the sacrifice times.

In general, we consider an experiment in which n individuals are under study and
censoring is permitted. Let 4i), ... , t(,, denote the m ordered failure times of those m
individuals whose failure times are actually observed (41) 4 ... • tm ). The remaining
n - m individuals have been censored at various points in time. It will be useful to introduce
the notation Sj to denote the number of survivors just prior to time 4,); that is, Sj is thenumber of individuals still under observation at time t(,), including the one that died at
4,). Then the Kaplan-Meier product-limit estimator (assuming no ties among the t,,) of

Key word.r: Adjusted Kaplan-Meier survival estimation; Bias of survival function: Life-testing; Right

censoring; Survival analyss.
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the underlying survival function, P(t) = Pr(T> t), is

Ij for t < tj ,

) - (S, - I)/S, for t(,) t < t,., (1)

10 for t a t,..

for]- I.... m, where t,,., - t, if the longest time an individual is on study is a censoring
time or t(,,.) - * if the longest time an individual is on study is a death.

This paper first proposes, in §2. some methods of "completing" the Kaplan-Meier
estimator of the survival function by (i) replacing those censored observations that are
larger than the last observed failure time by their expected order statistics; (ii) using a
Weibull distribution to estimate the tail probability P(t), for t > t,; and (iii) employing a
method suggested by Brown, Hollander, and Korwar (BHK) (1974). The second purpose
is to demonstrate the magnitude of the bias and mean squared error (MSE) of the Kaplan-
Meier estimator and to compare all methods of "completing" P(t) in the context of the
aforementioned mouse study, utilizing simulated lifetimes from exponential, Weibull,
lognormal, and bathtub-shaped hazard function distributions. These results are presented
in §3.

2. Compk.dou of Xapm-Meir Produa-Limit Estimator

2.1 Expected Order Statistics

One method of attempting to "complete" P(t), t > t, would be to "estimate" the failure
times for those censored observations that are larger than the longest observed lifetime. Let
n, be the number of censored observations larger than tf.. A theorem regarding the
conditional distributions of order statistics states that for a random sample of size n from
a continuous parent, the conditional distribution of T.), given T n..) - t'.o), u > n - n,
is just the distribution of the (u - n + n,)th order statistic in a sample of size n, drawn from
the parent distribution truncated on the left at t - t,,.,,) (see David, 1981, p. 20).

For computational purposes, take t, as an estimate of the (n - n,)th order statistic. Then
find the expected value of the n, order statistics from the parent distribution truncated on
the left at t,.. Since the Weibull distribution with survival function P(t) - exp(-tk/O) has
been widely accepted as providing a satisfactory fit for lifetime data, it seems reasonable to
employ the results of Weibull distribution theory to complete F(t), t > t,. (It should be
noted that any distribution which is reasonable for the specific situation may be used.) The
expected values of Weibull order statistics up to sample size 40 for location parameter
equal to I and shape parameter equal to .5 (0.5)4(1)8 may be found in Hater (1969). For
larger sample sizes, he states a recurrence relation which may be used.

To compute expected values of the n, order statistics in question, values for k and 0 must
be chosen. One approach is to use the maximum likelihood estimators, k and 0, computed
by using all observations to estimate k and 9. A second approach, due to White (1969),
uses least squares estimates of k and 9 obtained by fitting the model

ln(4j)) - (i/k) In 0 + (I/k) ln(H(4,))J (2)

to the 4 j)'s, where H(4 p) is the estimated cumulative hazard rate at t(,) obtained from the
Kaplan-Meier estimator. In our Monte Carlo study, we found the maximum likelihood
estimators performed better than the least squares estimators in all cases. Consequently.
the method of least squares will be dropped from future discussion in this paper.

The survival function for a Weibul random variable, truncated on the left at t,, is

Pr(t) - exp(tk - It)/], t > to (3)

-AL ~~



Estimators of Survival with Right Censoring 255

So, by the theorem on order statistics stated at the beginning of this section, the conditional
distribution of T.), given T_.o - 4..) (u - n - n, + 1, ... , n) will be approximated
by the (u - n + n')th order statistic in a sample of n, drawn from (3). For simplicity, let
,u - n + n, so that 1, n...,. Now the expected value of the jth order statistic from
(3) is

E(T:%)- c(" f t(P1 t)Jr(P<t)JN'I (ktk- /0) dt

n, - n(e -I JF (yk + t*)' (Yr[(y)NI(y-10 dy (4)

where P( y) - exp(-k/9), y - (tk - tk)I/k 0 and Tj:,,t is the jth order statistic in a sample
of size nc. Equation (4) can also be written as

E(Tj:N) - n, (Br + t ,)I/k[P(z)J-[P(z)l-J*Ikz - ' dz (5)

where P(z) - exp(-zl, z - (y/ 9 )'/k P 0. Now E(Tj:,,) may be crudely estimated by

1EZ + t i ilk (6)
where E(Z,.N) is the expected value of the jth order statistic from a sample of size n
determined from Harter's (1969) tables or recurrence relation, and 0 and k are maximum
likelihood estimators of 0 and k, respectively.

These n, estimated expected order statistics may then be treated as "observed" lifetimes-
in adjusting (or "completing") the estimated survival functiou computed in (1). The area
under the estimated survival function up to t, remains unctianged. The area under the
extended estimated survival function based on the n, estinited expected order statistics is
then added to the initial area to obtain a more precise estimate of P(t) [estimated order
statistic (EOS) extension].

2.2 Weibull Maximum Likelihood Techniques

A straightforward approach to completing P(t) is to set

P(t) - exp(-tk/) for t > t,. (7)

Estimates of k and 8 based on al observations can be obtained by either the maximum
likelihood (WTAIL) or the least squares method. However, our study found the completion
using maximum likelihood estimators was always better in terms of bias and mean squared
error.

One suggestion for ostensibly improving this estimator would be to "tie" the estimated
tail to the product-limit estimator at t. Two methods were attempted to accomplish this
goal. First, the likelihood was maximized with respect to k and 0 subject to the constraint
that exp(-t./O) = P(t). This method will be referred to as the restricted MLE tail probability
estimate (RWTAIL extension). Second, a scale-shift was performed on the tail probability
in (7) to tie it to the product-limit estimator. This method led to higher biases and mean
squared errors of the survival function and will be dropped from further discussion in this
paper.

2.3 BHK Type Methods

4 . The Brown-Hollander-Korwar completion of the product-limit estimator sets

P(t) -exv(-t/O*) for t> t, (8)



256 Biometrics, March 1985

where * satisfies P(t) - exp(-t/O*). In the BHK spirit we tried to complete P(t) by a
Weibull function which used estimates of k and 0, k* and 0", that satisfied the following
two relations:

-' eXp(-eA,/90)
and

The latter method also led to consistently poor performance and the results will not be
presented.

Tabe I
IWal I00 (and MS. 100)for esnmaing mean survival tiomfor various me of c ,mplaw

Wabul Remrictd
Ma % gmatd WTAIL Weibull

madBHK orer wistic ete- RWTAIL- Dib uion A at 560 dawys K-M extaaao exiou Son C entao
Welbul 400 18.7 -2.000" -1.462 -. 101b  .131 .206

(4.034)" (2.271) (1.172) (1.160? (1.543)
k m.5 500 22.3 -2.802" -2.078 -. 1761 .208 .299

(7.886r (4.498) (1.922)0 (2.344) (3.292)
600 25.5 -3.62.5 -2.704 -. 1876 .34" .479

(13.179)" (7.522) (3.025)' (4.275) (6.031)
400 24.6 -. 991" -. 047 -. 046 .016" .0379

•' (1.01 1)" (.215) b  (.257) (.275) (.343)
k - 1 500 32.6 -1.632" -. 049 -. 047 .073 .116

(2.696)" (.416)6 (.535) (.50M) (.705)
600 39.3 -2.359" .0226 .034 .140 214

(5.592)" (.596) (.987) (1.023) (1.353)
400 7.5 -. 036 .136" -. 005 .003 .004

(.012)b (.053) (.013) (.014) (.014)
km4 500 34.6 -.314 1.507 -. 020 .014b .019

(.109) (2.830)' (.036P (.04 I) (.044)
600 59.9 -. 903 5.982w .144 .02V' .039

(.822) (41.430)r (4.168) (.147)' (.157)

Lopormal 400 20.6 -. 868" -. 178V -.544 -.586 -. 412
(.777)" (.179)' (.363) (.403) (.267)

k - 1 500 29.0 -1.427" -. 150 b  -. 865 -. 918 -. 696
(2.060)" (.323)6 (.855) (.938) (.644)

600 36.9 -2.079" -. 0226 -1234 -1.281 -1.038
(4.345)r (.571)' (1.679) (1.800) (1.301)

400 8.6 -. 070 .129 -.047 -. 053 -. 027b
(.014)b (.056)' (.014)b (.014)" (.014)0

k-4 500 29.1 -. 330 1.033" -. 170 i81 -. 135 b

(.118) (1.459)" (.051) (.055) (.043r
600 54.5 -. 853 4.430 -. 391 -. 392 -. 3566

(.734) (23.159)" (.199) (.199) (.177)0

B.btub 400 18.6 -1.069 -. 185 -. 170 1.125" .063'
I (1.175) (.234)b (260) (1.745)" (.361)

pM.1 50 26.1 -j.722" --259 -. 202 1.523 .0466
(2.996) (.4270 (.560) (3.230)" (.608)

600 32.6 -2452" -. 362 -. 310 1.761 .047'
(6.043)" (.727)" (.982) (4.490) (1.254)

400 8.1 -1.786" -1.543 -1.547 -. 936 .343'
(3.218)" (2.463) (2.476) (1.081) (.544)

p , .4 500 13.3 -2.370" -1.826 -1.814 -. 825 .585'
(5.649)" (3.472) (3.446) (1.031 (1.303)

600 18.7 -3.072" -2.191 -2.175 -. 875 .841'

(9.466)" (5.013) (4.983) (1.285)' (2.792)

Worst esunnion method.
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3. A Comparison of the Various Methods

A simulation study of data such as that collected at NCTR was performed. Three groups
of 48 lifetimes were simulated with all testing stopping at 280, 420, and 560 days,
respectively, for the three groups. Distributions with mean survival times of 400, 500. and
600 days were used. The generated lifetimes greater than or equal to the sacrifice time for
each particular group were considered as censored. The remaining set of observed lifetimes,
along with the number censored at the three sacrifice times, constituted a single sample.
For each of the distributions studied, 1000 such samples were generated. Weibull distribu-
tions with shape parameters .5, decreasing failure rate, I, constant failure rate, and 4,

Tab" 2Bi a 100 (and MSE I W') for estiming 90th perrenie for various methods of completion

Resticted
Etimd Weibull WeibuU

BHK order statsic WTAIL RWTAIL
Disibtion K-M extenson tnmon extenmon extens.on
Weibuli 400 -5.017" -2.858 1.691 .234 .458

(25.185)" (9.358) (16.424) (7.524)' (10.812)
k -.5 500 -7.655" -4.620 1.897 .418 .642

(58.604,) (22.711) (24.276) (14.319' (21.442)
600 -10.306" -6.390 2.213 .734' 1.064

(106.21)" (42.449) (36.895) (25.419)b (37.911)
400 -3.610" .064' .248 .084 .067

(13.035)" (1.892r (2.423) (1.980) (2.945)
k- I 500 -5.913" .096' .289 .121 .306

(34.963)" (2.995b (4.681) (4.36!) (5.903)
600 -8.216" .244b .610 .418 .550

(67.459)" (4.198r (9247) (8.331) (10.792)
400 -. 045 .098 -. 007b -. 037 -. 011

(.038r (.236)" (.060) (.047) (.063)
k-4 500 -1.195 5.324! -. 031 -. 026 .024'

(1.429) (33.091)" (.146) (.141) (.177)
600 -2.554 17.913" .120 .090 .068b

(6.524) (355.02)" (.794) (.676) (.641)'

Loporus 400 -2.628" -. 0446 -1263 -1.758 -. 967
(6.908)" (1.526? (1.979) (3.407) (1.673)

k 1 I 500 -4.680" .213' -2.354 -2.718 -1.908
(21.902)" (2.708)b (6.153) (7.909) (4.751)

600 -6.736" .759b -3.507 -3.766 -2.90
(45.373)" (4.764)P (13.123) (14.981) (10.257)

J 400 -. 085 .161 -. 038 -. 162" -. 024'
(.0600 (.409) (.081) (.065) (.093)

k"4 500 -1251 3.722" -. 584 -. 657 -. 484'
(1.566) (17.654)" (.403) (.495) (.318r

600 -2.621 13.695" -1.214 -1.236 -1.158b
(6.872) (210.30)" (1.616) (1.662) (1.498?

Btw b 400 -3.629" -. 177 .053' -. 104 .105
(13.167)" (1.717)' (2.052) (2.058) (3.190)

pM.1 500 -6.068" -. 457 -. 071 -. 208 .004
(36.826)" (2.955) (4.702) (3.619) (5.245)

600 -7.997" -. 318 .043 -.244 -. 014'
.1 (63.954)r (4.330) (7.786) (7.608) (9.923)

400 -. 347 .143' .276 1.154" .981
(.273) (.844) (1.078) (3.877) (4.747)"

p w.4 500 -1.425 .521b .764 1.699 1.718"
(2.035) (1.540?P (2.067) (8.574) (10.714Y-

600 -3.554" -. 137 .132 2.304 2.450
(12.628)" (1.804) (2.352) (17.530) (22.456)

"Best eimanton method.

Worst estimaion tnedbod.
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increasing failure rate, were used. Lognormal distributions, failure rate changes from
increasing to decreasing, with first two moments comparable to the above Weibull distri-
butions with k - 1 and k - 4, were also used. Finaly, a bathtub hazard model of Glaser
(1980), failure rate changes from decreasing to increasing, was used. This distribution is a
mixture of an exponential of parameter X with probability 1 - p and a gamma with
parameter X and index 3 with probability p. Mixing parameters of p - .1 and p - .4 were
used.

The bias and MSE for the estimation of the tail probabilities, i.e., the completed portion
of the product-limit estimator, were calculated for each hypothesized distribution and for
each competing method of completion. Since these results were extremely similar to those
found in estimating mean survival time, 4 - f o P(t) dt, we show only the bias and MSE
of each competing estimator of is in Table 1. This also allows us to demonstrate the
magnitude of the bias and MSE of the product-limit estimator of A. The bias and MSE for
estimating the 90th percentile are also presented for the various estimation methods in

* Table 2. As one would expect, the Kaplan-Meier (K-M) estimator performs considerably
more poorly than the other estimation schemes. The BIK extension does very well if the
underlying distribution is exponential or lognormal with first two moments compatible
with the exponential. BIK does reasonably well for the bathtub-shaped hazard model, but
it performs very poorly for the Weibuil with increasing failure rate and for the lognormal
with first two moments compatible with the Weibuil.

"" The remaining three extensions (EOS, WTAIL, and RWTALL) appear to be somewhat
comparable. Each of them is best under certain circumstances although many times the -
biases and MSEs are so close to one another that they are essentially equivalent. Only the
EOS extension has the desirable property of never being worst. It usually is competitive
with the method that is best. Ordering the extensions from the standpoint of simplicity,
from simplest to most complex, we have BHK, WTAIL RWTAIL, and EOS.

In summary, the Kaplan-Meier estimator should probably be extended in the presence
of extreme right censoring. The choice of extension depends on one's knowledge of the
distribution of lifetimes under consideration and the extent of computer facilities available.
If the data follow an exponential-type distribution or if no computer facilities are present,
the BHK method is the extension of choice due to its simplicity. If the data exhibit a
nonconstant failure rate and computer facilities are available, then the RWTAIL or EOS
extensions seem to be advisable.
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• "'" RE SUME:

m On sait que l'estimateur de Kaplan-Meier est un est nateur biaisi de la fonction de survie quand le
pourcentage d'observations censuries est tres 61ev6. Plusieurs modifications de l'estimateur de Kaplan-
Meier sont examinees et conipar es du point de vue de leurs biais et 6carts moyens quadratiques.
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1. INTRODUCTION

A common problem in survival analysis is to estimate the marginal

survival function of the time, X, until some event such as remission,

component failure, or death due to a specific cause occurs. Often obser-

vation of this main event of interest is impossible due to the occurrence

of a competing risk at some time Y < X, such as censoring, failure of a

different component in a series system, or death from some cause not

related to the study. Standard statistical methods, which assume these

competing risks are independent, estimate the marginal survival function

by the Product Limit Estimator of Kaplan and Meier (1958). This estimator

has been shown to be consistent for the marginal survival function by

Langberg, Proschan and Quinzi (1981) when the risks follow a constant

sum model defined by Williams and Lagakos (1977). When the risks are

not in the class of constant sum models, the Product Limit Estimator

is inconsistent and, in such cases, the investigator may be appreciably

misled by assuming independence.

%. .
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In the competing risks framework we observe T = minimum(X,y) and

I = X(X < Y) where X(') denotes the indicator function. Tsiatis (1975)

and others have shown that the pair (T,I) provides insufficient information

to determine the joint distribution of X and Y. That is, there exists both

an independent and a dependent model for (X,Y) which produces the same

joint distribution for (T,I). However, these "equivalent" independent

and dependent joint distributions may have quite different marginal

distributions. Also, due to this identifiability problem, there may be

several dependent models with different marginal structures which will

yield the same observable information, (TI). In light of the consequences

of the untestable independence assumption in using the Product Limit

estimator to estimate the marginal survival function of X, it is important

to have bounds on this function based on the observable random variables

(T,I) and some assumptions on the joint behavior of X and Y.

Peterson (1976) has obtained general bounds on the marginal survival

function of X, S(x), based on the estimable joint distribution of (T,t).

Let Ql(x) - P(T > x, I - 1), and Q2 (x) - P(T > x, I - 0 ) be the crude

survival functions of T. His bound, obtained from the limits on the joint

distribucion of (X, Y) obtained by Fr4chet (1951), is

Ql (x) + Q2 (x) < S(x) < Ql(x) + Q1 (O). (1.1)

Since these bounds allow br any dependence structure, they can be very wide

and provide little useful information to an investigator.

Fisher and Kanarek (1974) have obtained tighter bounds on S(x) in

terms of a dependence measure a. Their model assumes that simultaneous

5



to the occurrence of Y an event occurs which either stretches or contracts

the remaining life of X by an amount associated with a. That is,

P(X > xlY y < x) - P(X > y + t(x-y)jY > y + c(x-y)). A large a, for

example implies that a small survival after censoring is the same as a-times

as much survival if censoring was not present. They show that if a is assumed

known, then the marginal survival function can be estimated from the

observable information. Also these estimates, Sa(x),are decreasing in O.

For their bounds, the investigator specifies a range of possible values

aL< Oa u so that Sa (x) < S(x) < S L(x).

Recently, Slud and Rubenstein (1983), have proposed general bounds.

They show that knowledge of the function

P (x) - lim P(x < X < X +61:( > x, Y :. x)

6-0 P(x < X < x +61X'> x, Y > x)
I6-0

along with the observable information (T,I) is sufficient to uniquely

determine the marginal distribution of X. These estimates Sp(t) are

decreasing functions of P for fixed x. Their bounds are obtained by

specifying a range of possible values p (X) < P(x) !- P2 (x) so that if

o(x) is the true function S02 (x) < S(x) < SW1(x).

In this paper we obtain different bounds'on the marginal survival

function by assuming a particular dependence structure on X and Y. These

bounds are functions of the observables (T,I) and a familiar dependence

measure, the concordance probability between X and Y. In Section 2 we

describe this model in detail. In Section 3 we derive the bounds and show

consistency when the dependence parameter is known. In section 4 these

bounds are compared to those obtained by Peterson, Fisher and Kanarek,

and Slud and Rubenstein.
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[. THE MODEL

The dependence structure we shall employ to model the joint survival

was first introduced by Clayton (1978) to model association in bivariate

lifetablet and, later, by Oakes (1982) to model bivariate survival data.

%4 Let S(x) - P(X > x), R(y) = P(Y > y),with S(O) R(O) - 1,be the

continuous univariate survival functions of the death and censoring times,

respectively. For e > I define F(x,y) - P(X > x, Y > y) by

F(x,y) [ + {R-- } - 1 -(2.1)

This joint distribution has marginals S and R. As 8-1, then (2.1) reduces

to the joint distribution with independent marginals. For G-"c,F(x,y)

min(S(x), R(y)) the bivariate distribution with maximal positive association

for these marginals. The probability of concordance is 8/(6 + 1) so that

Kendall's (1962) coefficient of concordance is T - (6 - 1)/( + 1) which

spans the range 0 to I.

This model has a nice physical interpretation in terms of the

functions X(xIY - y) and X(xIY > y), the hazard functions of X given Y = y

and X given Y > y, respectively. From (2.1) one can show that

A(xIY - y) -eA(xlY > y)

or

P(X > xiY - y) -[r(x > xjY > y)Je (2.2)

For 9 >1 the hazard rate of survival if censoring occurs at time y is

e times the hazard rate of survival if censoring does not occur at

time y. This implies that the hazard rate after censoring occurs is

,,%
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accelerated by a factor of 6 over the hazard race if censoring had not

occurred. Also when e - 1, (2.2), reduces to the condition required by

Williams and Lagakos (1977) for a model to be constant sum and hence for

the usual product limit estimator of S(t) to be consistent (See Basu and

Klein (1982) for details).

Oakes (1982) also shows that (2.1) can be obtained from the following

random effects model. Let S*(x) - exp (- [-1 1- +1 and let R*(y) be
S (x)

similarly defined. Let W have a gamma distribution with density

g(w)aw e-W and conditional on W - w let X,Y be independent with

4 survival functions {SA(x)}w and {R*(y)}w. Then, unconditionally, X,Y have

the joint survival function F(x,y) given by (2.1).

For fixed marginals S and R the joint probability density function,

f(x,y), can be shown to be totally positive of order 2 for all 6 > 1.

This implies that (X,Y) are positive quadrant dependent. in particular,

one can show that for S,R fixed the family of distributions

F = fF(x,y): 8 > 1) is increasing positive quadrant dependent in 8 as

defined by Ahmed, et al. (1979).

op
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I1. BOUNDS ON MARGINAL SURVIVAL

Suppose that X and Y have the joint distribution (2.1) and let

T = min (X,Y), then the survival function of T is

1

F(T) I 1 -1 - ] I (3.1)

and the crude density function associated with X,

d
q (t) - -1 P(T < t, X < Y), is given by

qI()-s(t) [F(t)P, (3.2)

s(t)

where s(t) - -dS(t)/dt.

Now consider the differential equation

s(t)/S (t) - qI(tYF(t) (3.3)

and suppose e is known. Then the solution of (3.3) for S(t) is

1

S (t) =I + (9-1) 0 - du if 0 >1
L~ ( F(u)P .

(3.4)

t q(u)
= exp( - I - du) if 6 = I.

0 F(u)

The functions F(-) and q1 () are directly estimable from the data one

sees in a competing risks experiment. Let T1 . ... , T denote the observed

test times of n individuals put on test and let ri, i = 1 ... , n be 1 or 0

according to whether the T. was an observation on X. or Y., respectively.

Las oI. % "
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Define F(t) Z(T. > t)/n and Q1 (t) x - (T. < t i - ).
1i. iml L

Then if 6 is known, a natural estimator of S (t) is

dQ (u)

Se(t) - ( e+ (6-1) I ) 1 (6-1) if 0>1
0

(3.5)
t dQl (u)

- exp( - [ () if 0 - 1

0 F(U)

For 0 - 1, this estimator is of the form of the hazard rate estimator

Iproposed by Nelson (1972). The estimators (3.5) can be expressed in

the following form for computation purposes,

S (t) exp - (n-i+l) if = 1

(3.6)

1 1
[I + (6-1)n@ -  [ (n-i+l) '] -6

T M<tV .1T(i) <' [(i)'

if 0 > I

where T(,), .... T(n) are the ordered death times.

For 0 known and if the true underlying joint distribution of (X,Y)

is of the form (2.1) then S0 (t) is a consistent estimator of S(t) as shown

by the following theorem.

Theorem 1. Let (X,Y) have the form (2.1) with marginals S(t), R(t)

respectively. Let e > I be known. Then on the set where S(t) > 0 we have

S (t) S S(t) a.s.

,U-.
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Proof:

S. For 0 = 1, the result follows by a theorem of Langberg, Proschan and

Z Quinzi (1981). Suppose that 9 > 1. Note that Q1 (t) -Q 1 (t) a.s. and

F (u) - F(u) a.s. by the strong law of large numbers. Since S0 (t) is a
t d

*continuous )unction of I in the support of F(u),it suffices to show

0 (o u)) 0 (F(u ()

Now, after an integration by parts,

dQ (u) (t (u)d (.

0 F(u)] 8 [F(t) - 0 (u)

S[Q (u) - Q(U)]d( ) + f Ql(U)d(le )• .[F(t)! F (u) F (u)

0 0

Stt

Q _ (u )  Q 1 (u)]d(-,,
,." [ " (u) ] 00 (u)

7 dQ (u)
+ .(3.7)

0 F (u)0

By the dominated convergence theorem

'SC t

im dQu u) dQ (u)

-0 [F(u) 0 [F(u) a

,6'L
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S *.. -5" . Y" <,* * " .•- . - "- " ,>'""" " -, " S -. :?,"' "



9

lia Q1(t) - QI(t)
ft., n-~ (u] = O." a.s.,

and
lim sup tIQ(lu) - Ql(u)l} 0, a.s.

Hence, applying the above results to (3.7), the result now follows: /

To obtain bounds on the net survival function based on data from a

competing risks experiment, we proceed as follows. First, note that from

(3.5) it is true that S0(t) is a decreasing function of 8 for fixed t.
+ t -

Also, as 8 - I we have 9 (t) t exp F --l(u)dQi (u)).e 1
V -" 0

which provides an upper bound. Notice that this upper bound corresponds

to an assumption of independence. As 8 - 6 one can show that S (t) F(t)

which corresponds to Peterson's (1976) lower bound.

In practice the above bounds, with 9 - 1, -, while shorter than

Peterson's bounds, may still be quite wide.

Tighter bounds may be obtained by an investigator specifying

a range of possible values for 8. If the sample size is sufficiently

large and _. 
<  < 82, then ,2 (t) < S(t) < So1(t). Specifying 1,

is equivalent to specifying a range of values T 1 < T < T2 for the

coefficient of concordance r since 8 - (1+T)/(l-T). Hence the primary

value of S8(t) is in putting bounds on S(t) rather than on estimation of

S(t).

A,$0.. .. .. .
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IV. EXAMPLE AND COMPARISONS

To illustrate the bounds obtained in the previous section, consider

the mortality data reported in Hoel (1972). The data was collected on a

group of RFM strain male mice who were subjected to a dose of 300 rads of

radiation at age 5-6 weeks. There were three competing risks, thymic

lymphoma, reticulutum cell sarcoma, and other causes of death. For

illustrative purposes we consider reticulum cell sarcoma as the risk of

interest.

Table 1 reports the value of S6 (t) for concordance T = (0 - 1)+(0 - 1).

The value of Se(t) at T - 0 corresponds to Nelson's (1972) hazard rate

estimator assuming independence. Peterson's upper and lower bound

(T - 1) are also reported as are Fisher and Kanerek's bounds and the Slud

and Rubenstein bounds for several values which reflect a positive

association between risks.

From Table 1 we first- note that Peterson's bounds are very wide.

Substantial improvement is obtained if one assumes a non-negative

dependence structure between risks (See Table 2). Further tightening

of these bounds is achieved by assuming that T is in the range 0 to .5

where the width of the boundaries is at most about 50% of that of Peterson's

. bounds.

Substantial improvement in the general bounds is also obtained by

the bounds of Fisher and Kanerek or Slud and Rubenstein. The bounds of

Fisher and Kanerek assume a specific censoring pattern and require a

specification of a stretching constant a. Without some additional informa-

tion, such specification may be impossible. Slud and Rubenstein's bounds

are for the general dependence structure. Their bounds require the
A.N--,
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specification of the o(t) function. This function is a quantity which

is not easily conceptualized by investigators from either a statistical

or biological perspective. This makes it questionable whether reasoable

upper and lower bounds on p(t) can be extracted from one's prior beliefs.

The major advantage of the bounds printed in this paper is that they

require only the specification of an upper and lower concordance, a

measure quite familiar to most investigators and easily explainable to

nonstatisticians.

%
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Table 2

RELATIVE SIZE OF THE BOUNDS ON NET SURVIVAL
FOR AN ASSUMED DEPENDENCE STRUCTURE

AS COMPARED TO PETERSON'S BOUNDS

Time 0 < T < 1 0 < T < .5 0 < T < .7

350 .9707 .0879 .2674

525 .9352 .2449 .5931

600 .7338 .5171 .6787

620 .6722 .5120 .6298
650 .5009 .4420 .4870

675 .3831 .3576 .3797-.

700 .2883 .2767 .2833

750 .0600 .0600 .0600

4-
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1L. Introductio'n

Consider a system consisting of several com ets linked in

series. For such a system the faize of ay arm of the components

causes the system to fail. Ih a biological or amdicul cntext

we can conside the conents to be different lethal diseases

and/or different reasons for reroval fru the study. In a clini-

cal trials framwork the primary response of interest, death or

remission, and censoring can be considered as omponents of the

system. This general formulation has been detailed in the theory

of competing risks (cf. David and Moeschberger (1978)).

A common assumption in such a formulation is that the

component lifetimes are statistically independent. Several

authors have shown that based an data fro serie systems only,

this assumption, by itself, is rot testable because there is no

w.ay to distinguish betwem idependent or depenient cohmponent
lifetimes (see Basu (1981), Basu and Klein (1982), Miller (1977),

Peterson (1976), etc.). However, several authors (see Lagakos

(1979) p. 1S2 and Easterling (1980) p. 131) have pointed out the

need to determine, quantitatively, how far off one might be if an

analysis is based on an inrrict assumption of independence.

To study the effects of errvneously assuming independence we

shall asstme that each of the components have exponentially dis-

tributed lifetimes when tested separately and that the property of

marginal exponentiality will be preserved even though some

dependence may be induced when the camponents are linked in series.

The assumption of exponentially distributed component lifetimes

has been made by Mann and G&ubbs (1974), hmn finding confidience

bounds on system reliability, Boardiman and Kendall (1970), when

estimating component lifetimes from system data, and Miyanira

(1982), -&m combining camponent and sytem data. (See Barlow and

Proschan C1975) or Mann, Schaffer, and Sing~ lla C1974) for a

4.



mme complete review.) We shall mx.del the dependence structure by

the three models of Cktel Q1960), a mxdel proposed by Dcmwton

(1970), and a model described by Oakes (1982). These models are

-: briefly described in Section 2.

The effects of a departue from the assumption of independent

,,.oen lifetimes will be addressed for two distinct situations.

The first situation arises in modeling the performance of a

theoretical series system constructed from two components. Here,

based on testing each component separately or on engineering

design principles, it is reasonable to assume that the components

are exponentially distributed with known parameter values. Based

on this information, we wish to predict parameters such as the

mean life or reliability of a series system constructed fran

these coqmponts. In Section 3 we describe how these quantities

are affected by departure from Ldeperdence.

The se=-.d situation involves making inferences about

component lifetime distribtions from data collected on series

systems. Comoonly, data collected on such systems are analyzed

by assuming a constant-sum model, of which independence is a

seilcase (cmaeWilliams and Lgks(1977) and L9Jsand

Williams (1978)). In Section 4.1 we study the properties of the

maxinu likelihood estimators of the component mean life calcu-

lated under an erroneous assumption of independent exponential

component lifetimes as mentioned above. Because of the wide

spread use of the ncnparmetric estimator proposed by Kaplan-

Mier (1958) for the component reliability we study in Section 4.2,

its properties, uben the marginal r lii.ties ar exponential

a and i'ependene is incorrectly assm .

2. The Models

Consider a two component series system with component life

lengths x., x2 . suppose that each has an mi"l suar,vival

-2-
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(2.1) fi(t) P(X. > t) -exp(-.- t), A > 0, t > 0.

ibis assumption is made on the basis of extensive testing of

each component separately or on knowledge of the underlying

mechanism of failure.

To examine the effects of a departure frm independence we

consider five bivariate exponential. models, each with marginals

equivalent to (2.1). The first three models are due to Gumbel

(1960); the last two iodels are due to Downton (1970) and Oakes

K (1982).

2.1 Gumbel's Model A

For this model the joint survival function is

(2.2) P(X1 > X1 ' X2 > X2 ) exP(=- )1 x1 - X2 2 - 11 2 )

c1 , x2 >0 X, ., X2 > 0, 0 < X12  -X1.

The correlation between X1, X2 is
112

P Y2 exp(X X2/A ) Ei(- Xi2 2 X Ai,

12 1

4iere Ei(z) -z exp(-u) du is the -integrated logarithm
u

For this model o varies from - .40365 to 0 as X 12 decreases from

XIX 2 to 0. it is never positive. The regression X2 on X is non-

leanear' with

E(X. X2 = x2) (A1 
+ 12x - '12/A2)/(Xl + X1 2 x2 )

2.2 Gumbel's Model a

For this model the joint su'vival function is

(2.3) _P(XI> X' X2 > X2 ) = exp(- yX. - A2x2 ){1 + 4P(lexp(-XIx!))

(1- exP(- X2x 2 )1, X1' 2 :o, X1 ; X2 > a, - 1/4 < p : 1/4.

ThA cor!VlAtion, P, may be positive or negative. M regression

-3-
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Sof X2 onX 1 is agan nolnear w th

"J ECX 2 = x2) a (1 + 2P - 40 (-A2x,)} 1 .

, The effects of a departure from independence on modeling system

reliability and estimating canponent reliabilities has been studied

in detail in Moeschberger and Klein (1984).

2.3 Gumbel's Modiel C

For this model the joint survival function is

P(X1 > xl , X2 > x2) exp(- [(lx)m + (A2x2)Mil/m},

X'1' X2 > o, m _.,l, x2 > o.

The correlation is
:(4 + 2m) /l2 (os sine,)m

4[.,o 
1: 2 d e - 1I

Q'ich varies from 0 to 1. For this model m: 1 corresponds to

independence and as m -

(2.S) '(3 XX > x.2) -mininun [exp(- Xlx 1.), exp(- X2x2 ))

the Frichet (19S8) upper bound for these marginals.

2.4L Downton' s Model

Downton (1970) suggests modeling bivariate exponential systews

by a successive damage model. This model assumes that in a tw

component system the times between successive shocks on each

ca :onent have' independent exponential distributions and -that the

number of shocks reuizw to cau~se each coponent to fail follow.s

a bivariate gwmntric distribution. The joint probability

density function of the caponent, life times is

(2.S) f," " px2,) e" " " -. " .e(. ,.- " ' " ' '

-i4-



~ere IQ(.) is the zodified Bessel function of the first kind of

order zero, and N~ 1 ' k X2 x 1 ~ . 0, P !.p 1. The corrvla-
tion between X1 , X2 is p 4%ich spans the interval [0,1). As P - 1

the joint survival fu.nction of X1 , X2 approachies the upper
Frchet distribution (2.S). For this xdel

E(X1JX 2  = x2 ) = (I- */X. + P X2/'l-

S2. S Oakes' Model

Oakes (1982) has proposed a model for bivariate survival

data. This model was first proposed by Clayton (1978) to model

association in bivariate lifetables. Special cases of Oakes'

general model have been suggested by Lindley and Sinrgwalla (1985)

and Hutchinson (1981).

For this model the joint survival probability is

(2.-7) P=x1 , x(e- X2> ,2) =((exp(--(8-)x-

e > 0, e _., > 1 , 1, >.

Fore 1, XV, X2 are independent and P(X > x1 , X2 > x 2) - (2.5)

as e . For this model Kedall's (1962) coeffcient of concordance

is r (e-1)/(e.l) 4iich spans the range 0 to 1. The correlation,

P, also spans the range 0 to I and is found numerically.

This model has the following physical interpretation. Let

2(x X ) and > x ) be the conditional failure rates

of X given X2  x2 and X2 > x2 . Then r(xlIX2  x2) = 8 r(X1IX2 > x2).

The model can also be derived from a random effects model.

This formlation assumes that wen the conponents are tested

separately tnder ideal conditinns the mont survival fnctions

are Si(t) = expC- exp(Xit(6-l)) * 1], i = 1, 2, and that 1A4en the

twco onents are put in a series system in the operating
envirornent there is a random factor W which sinztanrasly Changes
each component life distibution to. SY(t).f W has a gamma
distribution with density function MCx) ( ) e then,

-5-
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unoniditionally, the joint survival function (2.7) holds.

2.6 Frchet Bounds

Fr&12t (SS8) obtained bounds of the joint survival functions

Qich can be obtained for any set of marginal distributions. For

exponential marginals these are
MAXI" (e-'%.5. + e-2x2 _ 1, 0) < P(XI )' x, X2 ' Y1 2_

4llJh (e ,e

For this set of marginals the lower Fr~het distribution has

correlation -. 694 and the upper Frichet distribution has

correlation 1.0. hese are the minmal and maximal correlations

for exponential mrginals.

3. Ermors in Modeling System Life

Suppose that based on extensive testing or based on theore-

tical considerations each of the tw components in a series

system is nown to have an exponential distribution, (2.1) with

marginal means 1/Xi I, /) 2 , respectively. It is of interest to

predict the system reliability FRt) P(Xl > t, X2 > t) and the

system mean life u = F (t) dt. If the investigator assumes that

the tuo components are independent then the systen reliability is

(3.1) Prt) = exp(-(i 1 + X2 )t) and system mean life is U, = l/(Xi + X2)"

If the components are not independent, but in fact follow one

of the models in Section 2, then a measure of the effects of
a. inoorrectly asuigide*eneA(t) =(!'Ct) - T 1 (t))/Tr1 Ct) and

S( - )/ufor predicting systm reiability -and system mean

life, resectively, 4 wme'F(t) and u' art oputed unwe the

appropriate dependent model. Values of F(t) can be computed

directly fram (2.2), (2.3), (2.4), (2.6) (by mx-rical integation)

or fram (2.7). Expressions for U are given in Appendix 1. Al

%,%
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. -'xressi'ns for &(t) and 4 depend on the values of X and ) only1 2,

thruou the ratio ) 2  K and for K it he values are eqiva-
lent to ti se for K' For the upper Prechet distribution,

K

A p) -p 1 w e K 1 and tp : the point

where (t) : p. Also 6 = I/K for K > 1. For the lower Frechet
I distribution

1 K K 1

- otherwise

and 6 : K2 + K + I - (K+) Y + (K+l) Zn(Y) reY is the solu-
K K

tion of the equality XK + X : 1. Table 1 gives the values of
.(tp) x 100% and 6 x 100% for p .9, .7, .S, .3, .1 for the upper

and loer Fr chet distributions.

From Table 1 we see that the largest percent error occurs

when the parameters are equal. Also for fixed K there is rela-
tively small error in estimating system reliability by modeling

a dependent system by an idependent system ihen F(t) is large.

For smaller values of system reliability one can be appreciably
misled. Errors in estimating system mean life appear to be

substantial unless one component has considerably longer marginal

life than the second one. In that instance, one can see instinc-

tively that the cozrelation wuld have a minimal impact.

Figures IA-lC and 2A-2C are_ plots of.A(tp) for p =.:24,,S,. .75,

X,=1 and X2= 1, 1.S5 for the five models descibed in Sectibn 2.
Figures 3A, 38 aze plots of 4 fobr all five models as a. funtion of

-the corrlation. Fran these. plots, note that for_ positive. correla-

tions the most modeling error occurs for the Gumbel C model. For

relatively small corelation, .-. 2S- < p <.25 thee may still .be a

-7-
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moderate =deling eror, on the order at least + 10% for pre-

dicting system reliability at 'Ct) = .25, or P'Ct) = .5 and for

estimating the mean systan life.

TABLE I
UPPER AND LO ER ROUNDS OI HE PERCENT ERROR IN M -ODELING SYSTE M LIFE

F(rIN.? Qr.. I ~ ~ F(T) 0. S F (T) -. 1 MEAN LIFE

LO --iPPER LOER UPPER LO -R UPPR LOWER UPPER LOlER UPPER LOWER UPPER

K O BOUND O0N AD U D U ND O BOUN D OW B OUND *o 0OUND
--- -- - - - -- i

L -0.29 5.41 -3.t 19.52 -17.16 41.42 -100.00 82.57 -100.00 21.23 -39.631 40.0
2 -0.26 3.37 -3.39 12.62 -1S.27 25.9 -100.00 49.31 -100.00 115.44 -37.07 50.00

3 -0.22 2.67 -2." 1.33 -12.0 19.92 -51.52 35.12 -100.00 77.83 -34.95 33.33

4 -0.19 2.13 -2.44 7.39 -11.02 14.87 -44.11 27.23 -100.00 5.49 -32.93 23.00

5 -0.16 1.77 -2.12 6.12 -9.37 12.23 -31.33 22.22 -100.00 46.78 -31.06 20.00
S6 -0.14 1. 52 -1.87 5.23 -0.45 10.41 -33.91 18.77 -100.00 38.95 -29.53 16.67

7 -0.13 1.33 -1.67 4.36 -7I.5 9.05 -30.3 16.24 -100.00 13-33 -21.13 14.29
a -0.12 1.18 -1.51 4.04 -4.82 8.01 -27.42 14.31 -100.00 29.15 -26.91 12.50

1 -0.11 1. 0 -1.37 3.&3 -6.22 7. 9 -25.02 12.79 -100.00 25 .9 -25.93 11.11
to -0.10 0.96 -1.26 3.30 -5.71 6.50 -22." 11.37 -100.00 23.22 -24.9 10.00

I1 -0.01 0.86 -1.17 3.02 -5.28 5.95 -21.27 10.55 -tO0.00 21.15 -24.12 9.09

12 -0.00 0.91 -1.00 2.79 -4.91 5.48 -19.79 q.70 -too.00 11.38 -23.34 9.33

13 -0.09 0.76 -1.01 2.58 -4.59 5.09 -18.49 8.98 -100.00 17.88 -22.62 7.69

14 -0.07 0.70 -0.95 2.41 -4.30 4.73 -17.3 9.36 -100.00 16.9 -2t.16 7.14

15 -0.07 0.66 -0.90 2.25 -4.05 4.43 -16.35 7.92 -100.00 15.49 -21.35 6.67

1, -0.06 0.62 -0.83 2.12 -S.83 k.6 -15. 45 7.34 -100.00 14.50 -20.79 6.25

17 -0.06 0.59 -0.80 2.00 -3.63 3.93 -14.65 1.92 -100.00 13.65 -20.26 5.88

18 -0.06 0.56 -0.76 t.89 -3.45 3.72 -13.93 6.34 -100.00 12.98 -19.76 5.56

19 -0.0 0.53 -0.73 1.80 -3.29 3.53 -13.27 6.20 -100.00 12.20 -19.30 5.26

20 -0.05 0.50 -0.69 1.71 -3.14 3.36 -12.67 5.90 -92.26 11.39 -L.87 5.00

21 -0.05 0.4 -0.66 1.63 -3.00 3.20 -12.13 5.63 -6.34 11.03 -18.46 4.76

22 -4.05 0.46 -0.64 .56 -2.18 3.06 -L.63 5.37 -64.73 10.53 -19.01 4.35

23 -0.05 0.44 -0.61 1.50 -2.76 2.13 -11.16 5.14 -41.41 10.07 -17.71 4.35

24 -0.04 0.42 -0.59 1.44 -2.46 2.91 -10.74 4.13 -70.34 9.63 -17.37 4.17

25 -0.04 0.41 -0.37 1.39 -2.5 270 -10.34 4.74 -75.49 9.26 -17.04 4.00

I8
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4. Ewrors in Estimating Component Paremeters

4.1 Paranetric Estimation

"A In this section we examine the effects of incorrectly assuming

independence on the magnitude of the estimation error in esti-
mating the first component mean life based on data fram series

systems. Suppose that n series systems are put on test. For

each system we observe the system failure time and which compoInent
caused the failure. Let ni dentoe the number of systens where

the system failure was caused by failure of the i h c ponent,

i 1 1, 2, and let T be the total time on test for all n systems.

If we assume that the component lifetimes are independent and
exponentially distibuted then Moesdhberger and David (1971) show

that the maximum likelilwod estimator of u., the first component
mean life is

: ,C4.1) Vi = Tht for n, > 0.

Ths estimator is asymptotically unbiased and for n finite
E(wU) E(T)-E(/nIn, > 0) due to the independence of T and n1 .

Suppose now that the two component lifetimes are not inde-

pendent but follow one of the models discribed in Section 2. if
we incorrectly assune independence then a measure of the emcess

bias due to incorrectly assuming independence is

3 = CE(U l IDependent model) - E(LI independence) ]/wI. For each of

the dependent models under consideration T and n, are independent.
For large n, B converges to (i/p - ul)/u 1  wzre u is the mean

system lif an p.I the roaitythe fis omonentfal

first, computed under the dependent model. For finite n,
Eu 1 ) n u E (J/nlln1 )> ) accauted under the appropriate rmdel,

Qwre EU/ n1 1I  > a) F ( )pKCl-p K/K / (1-(l-p)n). Expressionsp= K=l

for u and p are given in Appendix 1 and Appendix 2, respectively.

-9-
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Th expesias epndo A on2 through thle ratio~ K
For all models, p a 1/2 whean K =1.

For the upper Fr&.het distribution p = 0 if K < 1; 1/2 if K:;

and I. if K > 1. Hfence for K < 1 no failures from the first com-

S.

ponent are ever observed s that the mnodeling error B b:o/es

infinitefor all For K > 1, p = I= sothat

a = Cl - ECupllndependee) /ul) 4tLich tends to 0; as n m/ In
this case the models with correlation ranging from 0 to 1 have a

increasing for p <~ p0 and decreasing for p > p(0 . For the lower

Frichet distribution, p is the value of X u4,ich solves the

equationX+XK -1 = . FbrK< 1wehavep <1/2 andforK> I

we have p e 1/2. Table 2 gives the value of B for n 25, SO,

for the to Fr&het distributions. It also gives the taximim
"Is.

thdeing aerror foer th Gumel modenih is~ an indicative o

1.maximln ecess modelinerromre. i a ndcino

.1'
V.

%.
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From. Table 2 we note that the dependence structure exerts a large

eff'ect on estimating the sna.ler of the two cmponent means and

that either effect is most exaggerated for small sample sizes.

For K > i there is very little sample size effect on the modeling

error. For K strictly bigger than one the maximum bias under the

Gumbel C model dereases with K and the correlation at 4tich this

maximum is attained also decreases to 0. Figures 4A-4C are plots

--' of B as n for K 3/2, 1, 2/3, resppitvely. Figures SA-SC

are plots of B for n 10 for K 3/2, 1, 2/3, respectively.

"- -" TUUL 2

RELATIVE I0DELING ERROR IN ESTIMAING TIE REM
1.50 Mel INITY

LOVER S6tile. C LOVER SGIMEL C Loi0] s C
K sMAD 0RHO-I RHO HAS jOwU RI40j 140 jAS 110130 R1O,1 MI iAS

11-0 -167.44 44# 1.00 *444 -90.09 4*#4*4 1.000 **"* -58.44 #*44 1.000 44*4*
I/ q -142.9 44404 1.000 6**44 -76.3 *4414 1.000 *1o*44 -57.84 #440 1.000 *04444
11 8 -123.37 1 1,*0* 1.00 *t44*4 -74.68 #*4444 t.00 #4444* -56.93 ***4* 1.000 *404**

1/ 7 -107.25 4 *4 1.000 *444*4 -49.03 *4***4 1.000 .*444 -55.87 #4**** 1.000 494444

I / 6 -93.46 #*#4# 1.0oo *44,1 -43.34 *44444 t.000 **44 -54.41 1##*## 1.000 **44

It 3 -81.91 4o4,4, 1.000 *44444 -61.54 *444,* 1.000 ##*4, -56.13 #"##4 1.000 o4o404
1/ 4 -71.45 4W4444 1.00O *444* -57.50 * 1,*4. 1.000 4,4,4, -51.24 o****4 1.000 4444**

31 3 -J1.70 44440 1.000 *44*#4 -53.00 *444*4 1.000 440* -48.73 *#444* 1.0N0 #4444

I/ 2 -12.16 1**4* 1.000 4444*4 -47.31 #444 1.000 0*9444 -46.06 o#***# 1.000 *4*044

I -40.90 105.91 1.000 105.91 -S9.45 102.13 1.000 102.13 -38.63 100.00 1.000 100.00
2 -12.56 -2.79 0.5L0 10.62 -32.84 -1.04 0.31 11.50 -32.12 0.00 0.528 11.9l

S 2.1-t182 0.400 5.33 -21.39 -0.6 9 0.410 R4.84 -28.:9 0.00 0.424 6.15
4 -23.&1 -1.33 0.346 3.39 -25.76 -4.52 0.362 3.7, -25.13 0.00.373 4.01
S -23.42 -. 04 0.12 2.39 -U3.80 -4.41 0.330 Z.71 -3."0 0.00 0.341 2.91
4 -2.05 -. 31 0.2g3 1.82 -22.Z5 -0.34 0.307 2.0" -2.36 0.00 0.319 2.24
7 -20.77 -0.74 0.271 1.46 -2o.90 -. 21 0. 2 1.A -21.11. 0.00 0.303 1.83
, -19.49 -4.4 .257 1.20 -1,.92 -0.2640.277 1.40 -20.04 0.00 0.29 1.5
9 -13.71 -4.39 0.246 1.ol -19.0 -0.3 0.266 1.19 -19.13 0.00 0.279 1.31

10 -17.91 -0.53 0.237 0.87 -11.20 -0.20 0. 2.7 1.03 -11.33 0.00 0.271 1.14



• "- TABU I

ASTMPOTIC BIAS OF iE PiMET LNIT ESTINATO

F(T)-0.7 i(T)-0.S 3).

LOWER PU.C LOWE 0111aE C LOWER viaS.
K BOUND RHO-I RHO BIAS BOUND RHO,, RHO BIAS BOUND RHOIt R BIAS

IF 9 -100.00 42.8 1.500 42.86 -100.00 100.00 1.000 100.00 -100.00 23-.33 1.000 233.3-3
1/ 8 -100.00 42.86 1.000 42.84 -100.00 100.00 t.000 100.00 -100.00 233.33 1.000 233.33
I7 7 -100.00 42.86 1.000 42.86 -L00.00 100.00 1.000 100.00 -100.00 233.3 1.000 233.33
1/ & -100.00 42.84 1.000 42.84 -100.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33
1/ 5 -100.00 42.86 1.000 42.8 -100.00 100.00 1.000 100.00 *-100.00 233.33 1.000 233.33
11 4 -100.00 42.86 1.000 42.86 -O4.00 100.00 1.000 100.00 -100.00 233.33 1.000 233.33., 1/ 3 -100.00 42.86 1.000 42.86 -100.00 100.00 1.000 100.00 -52.70 233.33 1.000 233.33

11 2 -100.00 42.86 1.000 42.84 -100.00 100.00 1.000 100.00 -24.21 233.33 1.000 233.33

1 -100.00 19.52 1.000 19.32 -100.00 41.42 1.000 41.42 -1.43 82.57 1.000 82.37
2 -100.00 0.00 0.523 3.87 -24.67 0.00 0.528 7.05 -4.40 0.00 0.21 13.67
3 -100.00 0.00 0.424 2,P -14.98 0.00 0.424 4.10 -2.83 0.00 0.424 7.22
4 -63.03 0.00 0.373 1.38 -10.7! 0.00 0.373 2.70 -LII 0.00 0.373 4.74
5 -1.47 0.00 0.341 1.01 -8.42 0.00 0.341 1.93 -44.50 0.00 0.341 3.47

6 -1.39 0.00 0.319 0. 7 -6.91 0.00 0.319 1.54 -34.83 0.00 0.3t? 2.70
7 -1.11 0.00 0.303 0.64 -5.84 0.00 0.303 1.26 -28.71 0.00 0.303 2.19
8 -1.03 0.00 0.290 0.54 -5.09 0.00 0.290 1.05 -24.45 0.00 0.290 1.83
9 -4.92 0.00 0.279 0.46 -4.30 0.00 0.279 0.90 -21.31 0.00 0.279 1.57

10 -0.82 0.00 0.271 0.40 -4.03 0.00 0.271 0.7! -18.89 0.00 0.271 1.37

Figures SA-SC for p = .25, 6A-6C for p . and 7A-7C for

p = .75 are plots of &l(p) for the 5 models and k = 3/2, I, 2/3.

As in the previous figures one can see that for even a smal
departure from independence the relative effect of dependence

can be quite large.



4.2 Nnparametric Estimation

A second approach. to tha problea of estimating omponent

parwmters is via the nonparmwtric estimator of aplan and

Meier (1958). rnvestigators wo routinely use nonparzmtric

techniques may take this approach in hopes of obtaining estimators

that are robust with respect to the assumption of exponentiality.

However this estimator is not necessaz 4ly robust to- the assumption

of independence.

The product limit estimator, assuming independent risks is

constructed as follows. Suppose that n systems are put on test

and let ril, ... , r. be the ranks of the ordered ni failures

fina. cause i, " n r m i  order lifetimes.
The estimator of the ocmponent e2iability for the ith component is

j~S(x)Iifx Xi
4.2.1 S(if x< Xil) , 1 if I(

1

j: n- rij
0 l n -rij + 1

.'9

where j(i,x) is the largest value of i for which xi(j) 4 x. This

estumrator is asympotically unbiased when the component lifetires

are independent.

4. Aehen the risks are dependent Klein and Moeschberger (1983)

show that Si(t) is not estimating the marginal comonent relia-
bility, but rather it is estimating consistently another survival

function

Q Rt)

r(t) = Pminim= (X1,X2 ) > t) and Qj(t) -
PutinoX 2) _ , m xin(x1,X xi, 1, 2. Expressions for

p~

A'" ,- . . , . , . . .-,.- ,,v .-. ., ,. % " , ," . ", " %~ _.,'-K " ' ' '€
]" .4". " % ' -' ' :i : - - " ' 'i - i ' i s , , ,



F it) for the five models of terest 4re given in Appendix 3.

A measure of the affect of dependence in using the Product

limit estimator with, dependent risks is Al(p) z cct p) - p)/p

where tp is the time .where the true caqponent ,eliability is p.

4 lp) is again only a function of k : 1 112 . For the upper

Fr'khet distribution

SCp) : p - 1 for k < 1

- 1 for k : 1 since

G for k > 1

for k < 1 (t) z 1 for all t since the first component never

%' fails, while for k > 1 all failures are due to the first component.
%F or-those models with correlation spanning the range (0 - 1],A1 Cp)

is increasing for correlations less than p* ar decreasing for

Scoeations ater than P * wen k > 1. For the lower Frechet

distribution F1 (tp) z exp _ I _ _ _du for p > (l-Y)
p u u -i

Q otherwise.

Table 3 shows the value of %1(p) x 100% for p = .7,..S, .3 for the

t-o Frechet disn'ibutions. For k > 1, the maxim= value under

the Gt -bel C model is also given. As in the parametric estimation

51 problem the largest errors are incurred when k < 1. In all cases

the effect of a deparnirn from independence is the largest when

p is small (i.e. for large t). The effect reases as k

inceases rvflecting the fact that when k X > > X the majority

of the system failures are due to the failure of the first

cloqpent.

U
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S. Conclusions

The results presented in this paper show that for all five

bivar-Zate exponential models one may be appxtiably misled by

falsely assuming independence of component lifetimes in a series

system. The amount of error incurred in modeling system reliability

not only depends upon the correlation between ccmponent lifetimes

but also on the level of system reliability. The error in

modeling mean system life similarly depends upon the correlation

and the length of mean syste life. Both quantities depend on the

relative magnitudes of the parameters.

For the dual problem of estimating component reliability

based on data fzm a series system, it appears that departures

from indepedence are of greater conseuence. Both parametric

and nonparemetric estimators of relevant component parameters

are inconsistent. Bias increases dramatically as the correlation

gets further from zero. However, the five models do not exh ibit

appreciable differences in bias and mean squared error as

correlation changes. This suggests that these models may belong

to a large class of bivariate exponential distributions 4Lich

possesses the properties exhibited here.
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I

Fornilas for expected System Life,

Qabel A - exp Q.2,)2 T 2 CA1.1)

Wh"ere R) is the survival furction of a standard norml random
variable.

V

Gumbel -1 + 6 P-X 2 C..2)
(XI+X 2)  CAI+ 2' MA 1+A2) (Ali+2X 2)

(iwubel C - C)jX -/ (Al. 3)
r2

" Downton - (X 1 X2 )(1-Q) (Al.4)

+ Cx14+X) X + _4X ~X I2X2 -2P X X)

2XIX 2 (XX 2)2 -t402 X I

Oakes - found by nu e'rical integration

wo

... . . + -*tt -. * * +P L [ \ +'J



Appendix 2 -Formulas for p:P(j 2

A 22

where i(*) is the survival function of a standard nrvrmal
random variable. (A2.1)

Gumbel 3 - P X <X 2  X 0 2AIX

(A2.2)

Gumibel C - PXu< X2  =

Crdo rb . (A2. 3)

w C ' into n - P (X < 2 X22 2xIx_ _ _ _ _ _ _ _

( iO1"- 2 ) (o1 +2 )( 1 l 2  -)(21 2 )  1 2

(A2.4)

f., ound niumericaly.
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Appendix 3-

Gumbel A - (~x) =exp(- %Ix 12 x)2 CA3. 1)

G~urIbel B - g,(x) = ep r E +C01-exp(. 2 t))(1-2exp(..Xit)) }W-2)

0 l +- 40(l-exp(-X 2 t))(1 -expk )I

Gumbe C - E{~x) = excp-). ( A3

AM~xM m
~1 2~

V.* Iownton -Found nuawrically due to no close fo-m solution for

R(t).

Sx
Oakes - ix x lx~l81t dt

J0(expCX1 (e-')t) +exp(X 2(B-)t) -l}



* FIGURE 1A

Relative Error in Modeling System Reliability at t : -25
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Figure 1B

Relative Eror in Mtdeling System Reliability at .25
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rIGURE 2A

Relative Error in Mo~deling System Reliability at t .5S
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Relative Error in Modeling System Reliability at tp.
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FIGUJRE 1C

Relative Error in Modeling System Reliability at p .75
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FIGUR 2c

Relative Error in Modeling System Reliability at t .75
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PIGJRE 3A

Relative Error in Modeling Mean System Life
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FIGURE 3B

RelAt ive Ermor ir Modeling Mean System Life

1 .0, 2  1..

CD

-J

z
LLJ c-, KEY

X O- )---- UIELA
CD a -- GU EI. 8

LU + ---- CUMBEL C
X ---- 0OWN TON

>- ---- OAKES

I .-c--.

*" 0

0

-04

'-0.50 -0.25 0.00 0.25 O.50 0.75 C. 0
CORR.



FIGURE 4A

Asymptotic Modeling Error in Estimating u1 for K 1.5
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FIGJRE 4B

Asymptotic Modeling Error in Estimating u1 for K 1
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FIGURE 4C

Asymptotic modeling Error in Estimating u for K .67
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FIGJRESA

Small Sample Size (N=10) !t)deling Frrvr in Estrimting w1 for K 1.S5
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FIGJRE S B

Smalli SImple Size (N=10) ttdelirg FVt- '. :;ijitngU K 1.
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FIGURE SC

Small Sample Size Modeling Error (N-1) in Estimating u1 , K z .67
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FIGURE 6A

Asvmptotic Errr in the Nonpararetric Estinutor of the
Fimt Component Survival Function -t
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Asrptot ic Error in the Nonparametric F-st inator of the
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tp .25, K 1.

C

C)
(D

C

N~ KE Y

LU ...---- CUMSEL 8
LJ X ----GOOWN TON
>- - - ---OAKES

-J5
LU'

0

0

0.s 0 7 1 0'~sd -0-.25. --. 0.00 0.25 - 05 .510

CORR.

e rJ, '



FrcJRE 6C
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FT(URE 6C

A-svmprotic Error in the Nonpazametric Estimator of the
Fimrt Component Survival Function at
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A RANDOM ENVIRONMENTAL STRESS MODEL FOR COMPETING RISKS

John P. Klein and Sukhoon Lee

Department of Statistics
The Ohio State University
Columbus, Ohio 43210

ABSTRACT

A random environmental effects model is proposed for competing risks experiments. The
model assumes a random stress, Z, which changes the scale parameter of each of the assumed
Weibull times to occurrence of the risks. Some general properties of the model are discussed, and
specific properties for a Uniform or Gamma stress model are presented. Estimation of parameters

under the Gamma stress model is considered, and a new estimator based on the scaled total time on
test transform is presented.

INTRODUCTION

The problem of competing risks.arises naturally in a number of engineering or biological
experiments. In such experiments, for some items put on test, the primary event of interests (such
as death, component failure, etc.) is not observable due to the occurrence of some competing risk
of removal from the study (such as censoring, failure from a different component, etc.).
Competing risks arise in an engineering context in analyzing data from

(a) series systems,

(b) field tests of equipment with a fixed test time and a random or staggered entry into

the study, or

(c) systems with multiple failure modes.
Competing risks arise in biological applications in analyzing data from
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(a) clinical trials with a fixed trial duration and staggered entry
(b) clinical trials with some patients withdrawing from the trial prior to response
(c) studies of the time to death from a variety of causes
A common assumption made in analyzing competing risks experiments is that the potential

(unobservable) times to occurrence of the competing risks are independent. This assumption is not
testable due to the identiflability problem. That is, for any dependent competing risks model, there
exists an independent competing risks model which yields the same observables. (See Basu and
Klein (1982) for details.) However, Moeschberger and Klein (1984) show that an investigator can
be appreciably misled in modeling competing risks by erroneously assuming indepencence.

In this paper we present a model for dependence between the various risks by assuming that
dependence is due to some common environmental factor which effects the potential times to
occurrences of each risk. In section 2 we present the model and study its properties for bivariate

series and parallel systems. In section 3, we consider estimation of the model parameters for
competing risks systems.

2. THE MODEL

For simplicity we shall consider the problem of bivariate systems and discuss our model in
terms of engineering applications. We assume that under ideal, controlled conditions, as one may
encounter in the laboratory in the testing or design stage of development, the time to failure of the

two components, to be linked in a system, are X0 and Y0. We suppose that under these

conditions, X0 ,Y0 have survival functions F0 , Go on [0, -). We assume that both X0 andY0

follow a Weibull form with parameters (il' X1) and ( 112, X2), respectively, That is, F0 (x) = exp(-

X 1x l1). The Weibull distribution, which may have increasing ( 1 > 1), decreasing (1l < 1) or

constant failure rate (11 = 1) has been shown experimentally to provide a reasonable fit to many

different types of survival data. (See Bain (1978)). We now link the two components into a
system in such a way that under ideal lab conditions the two components are independent.

Now suppose that the above system (X0 , Y0 ) is put into operation under usage conditions.

We suppose that under such conditions the effect of the environment is to degrade or improve each

,. component by the same random amount. That is, the effect of the environment is to select a
random factor, Z, from some distribution, H, which changes the maginal survival functions of the

two components to F0 Z and GOZ. A value of Z less than one means that component reliabilities are

simultaneously improved, while a value of Z greater than one implies a joint degradation. The
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resulting joint reliability of the two components' lifetimes, (X,Y) in the operating environment is

F(x,y) = E[exp(-Z(Xxll1+ 2Y 12 )]. (2.1)

This model has been proposed by Lindley and Singpurwalla (1984) in the reliability context

when F0 , Go are exponential and H( ) follows a gamma distribution. This basic dependence

structure was also proposed by Clayton (1978) to model associations in bivariate survival data, and
later by Oakes (1982) to model bivariate survival data. Hutchinson (1982) proposed a similar

model when H( ) has a gamma distribution and F0 (t) = G0 (t) = exp(-tl).

The model described above for a general distribution of the environmental stress has a
particular dependence structure which we summarize in the following lemmas.

Lemma 1. Let (X,Y) follow the model (2. 1) where Z is a positive random variable with finite

r s
(- + -)th inverse moment. Then

711 12
-rT I1 "s2 -(rT I +sMt 2 )

": E(xr Ys) = X,1 )-2 F(1 + r/11l) F(1 + s/112) E(Z )(2.2)

The proof follows by noting that, given Z = z, (X,Y) are independent Weibulls with parameters

-r/fl 1 -r/f1
(TI" l , z) and (12, X2 z), respectively and E(XrIZ=z) = z r(I+ rlII) with a similar

expression for Ys. When the appropriate moments exist, we have

(A) E(X) = E(X0 ) E(Z/),

(B) V(X) = E(X02) Var (Z + E(Z ) Var(Xo),

(C) Coy (X,Y) = E(X0 ) E(Y0 ) Cov(Z , Z ) which is greater than 0.

Sf 1I =l2 = 11 then the correlation between (X,Y) is

.r(1+ 1/rl) 2 Var(Z" l /Tl)
4P

Var(Z'1/) r(l+2/71)+ (r(l +2/1l) - r(1+1/71)2) E(Z-'TI)2

In this case the correlation is bounded above by r(l+l/tr) 2 / r(1+2/71). Figure I shows the

maximal correlation as a functcion of 1 for 1i e(0, 10). Note that this maximal correlation is an

SI
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FIGURE 1
UPPER BOUND ON MAXIMAL CORRELATION FOR RANDOM

ENVIORNMENT MODEL.
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increasing function of TI. One can also show that F(x, y) is positive quadrant dependent for any

TI1, T12•

Exact expressions for competing risks quantities of interest can be computed when a

particular model is assumed for the distribution of Z. We shall consider the gamma and uniform

models. Consider first the gamma model with hz(z) = ba za" 1 exp(-bz)/l(a), z > 0. For this

model, the joint survival function is

ba
F(x,y) = (2.3)

[b+Xlx + X2y2Ia

which is a bivariate Burr Distribution (see Takahasi (1965)), the marginal distributions are

univariate Burr distributions with

E(X) = (Xl/b) 1(l+ltr/l)r(a- 11/TI) r(a), ifa > /l,

_2M'l r(1+2rl l)(a-2/r1) r(l+l/tl)F(a-l/al) ] 2/Var(X) = ( ) -[12
l-b r (a) F(a)

with similar expressions for E(Y), Var(Y). The covariance of (X,Y) is

Cov(XY)= (X1/b)"I/Tll (2/b" 1 2 +/ i F(a-l/-1 1 /r12) F(a-1/112) F(a-l/rI1)
(XoIbXr(1+1-11 ) 1(l+l12){.

F(a) F(a)

for a > 'M 1 + 1/112. For the gamma model, the reliability function for a bivariate series system is

given by

- 11 '12

Rs(t) = (1+(X 1/b)t + (X2/b)t )-a' (2.4)

and for a parallel system by

Ill '12)- _'1( L /~ 12 +'X/~ 12)-
Rp(t) = (1+( Xl 1/b)t +(+ b)t )-a- (1+( /b)t+ (X2/b)t )a (2.5)

Figures 2A-E are plots of the series system reliability for X I= 1, 2 =2 and several combinations

" 4' , ,€" ,', " ,- q- . ' ." . . .,' .%. , " " ." .~ . . " .. " .€ " ' . . ... " " " .- . '' .t '.'3L'
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of TI1' 112. Each figure shows the reliablity for a = 1/2, 1, 2, 4, and the independent Weibull

model. In all cases, b = 1. For these figures we note that for fixed X 1' X2 Tl 1T12, t, the series

system reliability is a decreasing function of the shape parameter a. Figures 3A-E are plots of the

parallel system reliability (2.5) for the above parameters. Again, the reliability is a decitasing
function of a. Also in both the series and parallel system reliability, the shape of the reliability

function is quite different from that encountered under independence.

The gamma model is a reasonable model for the environmental stress due to its flexibility and

the tractability of the model in obtaining close form solutions for the relevant quantities and in

estimating parameters. However, in some cases, such as when the operating environment is
always more severe than the laboratory environment, the support of H may be restricted to some

fixed interval. A possible model for such an environmental stress is the uniform distribution over

[a,b]. For this model, the joint survival function is

TI1 T12 TI I 2T12
[exp (-b(Xl x + X2 y )) - exp(-a( X 1 x + XY ))]

F(x,y) = (2.6)

T 1 112(b-a)(Xlx + -2 y

-1/111 (111-1)/Ti1 (11-1)/Tl)
E(X) = X1  r(I+1Il) 1l (b -a /{(1 -1)(b-a)] ifTIl *1 1

= gln(b/a)/[)X1 (b-a)] if11=l,

Va(X) = 111 ;(1+21r q )111 (b - a (111-2)/1

(b-a)
2 11~-1/ 11) (T 1- 1/ TI ) )2

-rF(l+l/ill)2111b -a if il1l 1,2

(111 1) (b-a)

2/(Xl 2 ab) - Aln(b/ a) 2 /[(b-a) )Li] 2  if Tl = I

lln(b/ a) 1-1(ba) (b1/ 2na1 /2 )2  
ifnl = 2(b-a) ( +1/ a



FIGURE 2 R
SERIES SYSTEM RELIABILITY UNDER GAMMA(A,1) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 B
SERIES SYSTEM RELIRBILITY UNDER GAMMA(R,I) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 C
SERIES SYSTEM RELIABILITY UNDER GAMMAR,1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 2 D
SERIES SYSTEM RELIABILITY UNDER GAMMA(A,1 ) MODEL

FOR THE ENVIRONMENTAL STRESS.
),i=! . , 2=2. 0 . n=l1/2. n2a= 1/2.

00
C6

r- 
KEY

S---- SHAPE 1/2
---- SHAPE I

+ ----SHAPE 2
X ---- SHAPE 4

.---- NDEP

Cf)z .

F-

z
=0

ccr

CO~

LA

c'J

lb o1.-00 2.00 3.00 4.0OO 5.00TIME.
cbo



FIGURE 2 E
SERIES SYSTEM RELIRBILITY UNDER GRMMR(R,I) MODEL
FOR THE ENVIRONMENTRL STRESS.
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FIGURE 3 R
PARALLEL SYSTEM RELIABILITY UNDER GAM'MR(A,1] MODEL
FOR THE EtV;IRNMENTRL STRESS.
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FIGURE 3 B
PARALLEL SYSTEM RELIABILITY UNDER GAMMA(A,I) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 C
PARALLEL SYSTEM RELIABILITY UNDER GAMMA(A,1) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 3 0
PARALLEL SYSTEM RELIABILITY UNDER GRMMA(R,IJ MODEL
FOR THE ENVIRONMENTAL STRESS.
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and

r(l+1111)r(+/r 2) 11112 (b 1  -a

Xo(,Y 1 1/hi11111/j (TI11112 TI I 12) (b-a)

11- 1  71i-1 112-1 T12-1

III1T12 (b -a A( -a )

(111-1)( T12-l1) (b-a)2  )f111 12*1,l/ TII + 1/112*1

__ __ __ _ __ -_ _(b -a A

if 1trl+ 1/11= 1

r (1+1/i1i) T11 11i, (b -a ) ~ (b -a ) n(b/a)

1 1 fln(b/a) 2

(X I X2 ) Cab) (-)r

4 For this model, the reliability function for a series system is

RSt) = [exp(-b( X~ 11+ X2t )l - expf-a( 111" X2 l(2.7)

-~ A..t."'2 + x2 .t )]z
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'i 112

and for a parallel system is

Rp (t) = [exp(-b(X1t 1) .-exp(-a X t5 I + [exp(-b Xt 2 ) -exp(-a t12 -Rs(t)

(b-a) X t  (b-a) 12t

Figures 4A-E show the reliability for a series system and figures 5A-E for a parallel system

under the uniform model for various combinations of X1, X2,11 1 ,1 2 ab. Notice that when A =

.25, B = .75, which corresponds to an operating environment which is less severe than the test

environment, the system reliability is greater than that expected under independence, while when

(a,b) = (1.25, 1.75) or (1., 2), which corresponds to an environment more severe than the test

environment, the system reliability is smaller. Also when the (ab) contains 1, which corresponds

to an environment which incurs the possibility of no differential effect from that found in the

- laboratory, there is little difference in the dependent and independent system reliability.

3. Estimation of Parameters Under Gamma Model

Consider the model (2.3) with il 1 = T12 = 1. For this model, the reliablity for a series system

is

Rs(t)- (1 + trm)-a. (3.1)
b

Notice that this model depends only on two parameters 0 = (Xl+ X2)/b and a so that if we had data

a.. only from systems on test in the operating environment, the only identifiable parameters are a, 0,
'p.

'p



FIGURE 4 R
SERIES SYSTEM RELIABILITY UNDER UNIF(R,B) MODEL

FOR THE ENVIRONMENTAL STRESS.
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FIGURE 4 B
SERIES SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.X1=1.0, X,2=2. 0, l= 1.-0- "n2=2.0O.
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FIGURE L C
SERIES SYSTEM RELIRBILITY UNDER UNIF(R,B) MODEL
FOR THE ENVIRONMENTRL STRESS.
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FIGURE L D
SERIES SYSTEM RELIABILITY UNDER UNIF(A,B} MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 R
PARALLEL SYSTEM RELIABILITY UNDER UNIF(R,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 B
PARALLEL SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
>,=1.0, N2=2.0, nl=1.0. '12=2. 0.
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FIGURE 5 C
PARALLEL SYSTEM RELIABILITY UNDER UNIF(A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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FIGURE 5 0
PARALLEL SYSTEM RELIABILITY UNDER UNIF A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
>1=1 .0, X2=2.0. ni=I/2, '12=1I/2.
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FIGUBE 5 E
PARALLEL SYSTEM RELIABILITY UNDER UNIF (A,B) MODEL
FOR THE ENVIRONMENTAL STRESS.
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11, not X1, X2, I, a, b. However, in many instances we have extensive data on the performance of

the components in the lab under ideal operating conditions so that one may consider X1, X2, ni to be

known based on estimates from this data. We shall focus on the problem of estimating 0 and a,

* based on data on the system failure times collected in the operating environment. Let t1, ... , tn be

the failure times for n such systems put on test, and, let wi = t, i = 1, ..., n.

Prior to attempting to estimate (a, 0), we would like to check if the model (3.1) is feasible.

A graphical check of this model can be done through the scaled total time on test (STlOT) plot of

"-! Barlow and Campo (1975). The STTOT for W is
.

: F"1 (t)

0 " Rs(t)dt

Gw(t) = = I-(,-) (a 1)/a for a > 1. (3.2)

J Rs(t)dt
0

Note that (3.2) depends only on a. Figure 6 shows the form of the STTOT for several values of a.

Notice that for all a, the STTOT is below the 450 line (which corresponds to exponential system

life) since the hazard rate of the series system is decreasing. Let

Tn(W(i)) = 7 W(j) + (n-i)W(i), (3.3)

j=l

where W( 1 ) W(2) :5 ... < W(n) are the ordered systems failure times be the total time on test at

W(i). The empirical STTOT plot then plots (i/n, Tn(W(i))/T(W(n))) which can be compared to

figure 6 for a graphical check of the model. Also, crude estimates of a can be obtained by

[:.-,.. V '*-~*- .



FIGURE 6
SCALED TOTRL TIME ON TEST TRANSFORM
FOR GAMMA MODEL.ICD

KET

c x ---- .A-.50
b ---- A-2.OO

C - ... ---A 3.OO+ ----A-5.00

Lu

i "9

1-co

0

u-J8

C-)

U-j

C

D020 0.40 0.60 0.80 1.00

1Tii0



9

comparing the empirical and theoretical sMTOT plots. When there is no random environmental

effect and the components are independent, then the empircal STTOT plot should look like the 450

.line. Also as a tends to infinity this plot approaches the 45* line.

We now consider several estimates of a and 0. The log likelihood for the model (3.1), based

on a sample of size n, is

L(aO) = n In a + n In 0 - (a+l)7, In (1+0 Wi) (3.4)
i=1

so that

n
a/aa L(aO) = nta - I An (1 + 0 W i) (3.5)

i=l

IP and &DO0 L(a,0) = n/0 - (a+l) n wi/(l+ Owi) (3.6)< . .. i= l

.' For (3.5) we note that the maximum likelihood estimator of a

anmle -- (3.7)n
An (1 + O Wi)

~i--I

and the maximum likelihood estimator of 0 is the solution to

n n W i
-- ( +l)(.) = 0. (3.8)
0 In( 1 + 0 Wi) I + 0 W i

-.%

n n 2
One can show that 0 is positive if n 7, wi2 > 2(" wi)2 . (3.9)

- i-1il

In such case 0 nmle is obtained by solving

9.e
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(3.8) numerically.

A second estimator of (a, 8) is the method of moments (mie). Since E(W) = [O(a-1)] -

and E(W2 ) = 2[ 02 (a-l)(a-2)]" I where a > 2, we have

amine = I + (3.10) and - (3.11)
i 2 - 2( wi)2

provided that (3.9) holds. If (3.9) does not hold, then this estimator does not exist.

A third estimator was suggested by Berger (1983) in a different context. He suggested

estimating 0 a modified methods of moments estimator Obe r = (a w)-1 , (3.12)

where w =Zwi/n,

which is used as the true value of 8 in the likelihood (3.4) so that the estimator of a is the solution

to

wi  (a+1) wi
- 2 ln (1+ - ) + -. X = 0 (3.13)

aw wa 1+wi/(aw)

A final estimator is based on the SITOT plot. Let Ci = Oln(1-i/n) and Di =

2n(l-Tn(W(i))/Tn(W(n))), i = I, ... , n-1. If (3.2) holds, then we should have

Di - (l-1 /a)C i, i = 1, ..., n-1, (3.14)

so the value of a which minimizes

n-i
7, (Di - (1-1/a) Ci)2 is a reasonable estimator of a

i=l

The resulting estinator is als Ci2  (3.15)

" "~ ~ ~ ~ ~ ~ ~~~~~7 "C"=" "'''"''--$ "r ""-""- - I "Ci Di ""' " """-" )' ''-"'"'-''-''' '



which is in the parameter space if . Cj2 > 2" Cj Di . A better estimator should be obtained by

weighting the Di's differently since for i < j, Var (Di) < Var (DJ). The variance of Di depends on

the unknown parameter a so we weight by the variance of Di computed under an assumed

exponential distribution. The variance of Di in that case is

i 1
Vi  1,..., n-1 (3.16)

j=l (n-j)2

so that the weighted least squares estimator of a is

SCi2/V iawls  C if 2/V i > CiDi/Vi. (3.17)

i CiD i

Vi  Vi

Once we have obtained a by either of the two least squares estimators, we substitute this value into

(3.6) and solve this equation numerically for els or Owls .

V The condition 1: Ci2/V > X Ci Di/V i includes a few more possible samples than the

condition (3.9) for the other three estimators. However, those samples which satisfy I Ci2/Vi >

" Ci Di /Vi for which (3.9) fails to obtain yield very large estimates of 0. Since a reasonable

model for T when 0 and a are not estimable is the independent Weibull series system which has

system reliability very close to (3. 1) when a is very large, this is not a problem. Figures 7a and 7b

are scaled total time on test plots from two simuilated samples of size 30 from (3.1) with a = 3, 0=

1. Looking at figure 7a, we see that the estimated scaled total on test doesn't look too different

from the 450 so that an exponential model might not be unreasonable. For this data set only the

weighted least squares estimator exists and it yields aWLS = 45.33 and 0 = .0567. For the data in

figure 7b all estimates exist, and we have

'l':

.1 , ) . i . p " - * ) '@ a , : r , .""
a

o "" " ." . " " ." e ""w 7 ' C "



FIGURE 7 R
SCALED TOTAL TIME ON TEST PLOT
FOR SIMULATED DATA.
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FIGURE 7 B
SCALED TOTAL TIME ON TEST PLOT
FOR SIMULATED OATR.
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'0l e =. 9 3  amle = 2.98

Ome e  = . 4 9 1 amnme= 4.86

.ber = .720 aber = 7.02

Ols = .739 als = 3.58

owl s = .970 awls = 2.89

To study the properties of these estimators, a small scale Monte Carlo study was performed.

Random samples of size n = 15, 30, 50, 75, or 100 were generated with X1 + X2 = 3, b = 3, so 0

1 and a = 2, 3, 5. 1000 samples were generated for each combination of n and a. The bias,

standard deviation of the estimates and n, the number of samples where the estimator exists is

reported in table 1 for a, table 2 for 0, and in table 3 for an estimator of the system reliability

obtained from (3.1) at to = 9.085. The true system reliability at to is .8255 when a = 2, .75 when a

= 3, and .619 when a = 5. Also reported in each table is the bias and standard deviation of the least

square and weighted least square estimators when they are restricted to those samples where the

other estimators exist.

From these tables we note that Berger's modified estimator performs very poorly. Also the

weighted least squares estimator allows for estimation of parameters in many more samples when n

is small. In general the maximum likelihood estimator outperforms the other estimators, however,

when the weighted least squares estimator is restricted to those samples where the maximum

likelihood estimator exists, this estimator performs much better when n is small. The somewhat

better performance of the ME in terms of bias is deceptive since some of the estimates of a are less

than one, which implies that the mean system reiliability is infinite. Also the weighted least squares

estimator of system reliability seems to outperform the other estimators of the system reliability in

spite of its relatively poor performance as an estimator of 0. Our recommendation is to use the

weighted least squares estimator since it more often provides estimators of the relevant parameters

and is somewhat easier to compute.

|4/ !

"I..-

,..



(ABLE 1
BIAS AND STANDARD DEVIArION(SD) OF ESTIMATORS OF A

MAXIMUM WEILHTED METHOD OF

LIKELIHOOD LEAST SQUARES LEAST SQUARES MOMENTS BERGER'S METHOD

N AIS So M BIAS SD ti BIAS SD M BIAS so M BIAS SD

1 15 69 4.5 29. 851 4.8 41. "' , . 49. 77t) 7.1 Z7. 70 14.4 o.
766 1.3 5. 7t15 3.5 16.

- 30 916 2.8 20. q53 4.7 37. 877 6.4 52. 916 6.1 32. 916 19.0 52.

912 1.1 3. 857 5.4 51.
2 50 979 5.8 114. 989 1. 7 10. 95 4 4.0 16. 979 8.5 131. 979 15.4 241.

976 1 . 3. 952 3.5 1.

2 75 99 6 , 9 4. 998 1.0 5. 974 2.4 12. 996 2.2 4. 996 4.J 2.

996 1.0 5. 972 2.4 12.
2 l00 999 0. 3 . 100 1.7 35. 989 1t., 9. 999 1.7 5. 9q9 3.7 a.

999 0.6 2. 989 1.5 9.

3 15 642 7.3 9. 753 36.4 843. 65.3 13.1 149. 64! 16.8 77 643 26.0 114.

636 1.3 9. 573 10.7 I5 o .

3 A.3 809 5.7 30. 870 1.8 141. 768 11.9 100. 810 9.9 1W4. 809 17.7 68.

804 1.8 6. 731 11.1 102.
z 50 916 3.6 18. 935 6.9 65. 864 .4 33. L. 6.6 25 916 12.5 42.

912 2.9 29. 85] . 7 32.

3 75 963 2 5 14. 977 2.8 17. 925 11.6 144. 963 4.7 24. 963 6.b 38.

958 1.3 5. 923 11.6 144.
" 1,)') 78 17 7. 989 2.1 12. 956 3.7 19. 978 3.0 9. 978 7.2 15.

978 1.3 5. 952 3.6 19.

i5 520 38.7 573. 665 8.2 53. 558 30.3 493. 522 69.8 925. 522 112.9 1505.
516 -0.7 5. 458 1.8 15.S. 43 1. is. 6 4 5 .. a

3 .0 674 20.4 148. 752 9.3 68, 669 1 .7  109. 674 31.7 202. 674 .. 6.:

66,) 3.2 29. 601 S.4 86.

ul) 8 7.6 39. a0 9.1 97. 756 13.4 88. 801 V1l.4 52 80L 23.4 4 t.

787 2.0 lo. 722 @.6 56.

3 /5 893 12.8 139. 9 15 8.0 94. a27 ,.6 2. 89 15.3 122 89" 3,.6 281.

878 2.9 1.. 714 5.8 20.
'3 1':. 89 9. 4 s4. 41 19.6 3.. 81 e . 21. 1:.. 129. 892 29.1 1' .

@7 -q I .,' ;'3 2! .," " .

-I

4



rAbLE
BIAS AND STANDARD DEVIAT[ON'SD) OF ESTIMATORS OF e

MAA1lMUM WEIGHTED METHOD OF
LIVELIHOOD LEAST SQUARES LEASI SQUARES MOMENTS 8ERGER S METHOD

A N M BIAS SD M 31AS SD M 8[AS SD M BIAS SD M BIAS 3D

,, , , 0. .56 1.702 852 -. 102 0.74L 782 -. 192 0.729 770 -. 683 0.205 '70 -. 803 0. 2
766 -. 027 0.0-25 715 -. 156 0. '1)

2 30 916 0.112 0.919 93T -.135 0.580 877 -.254 0.586 9t6 -.623 0.192 916 -.798 0.095
912 -. 100 0.567 857 -.239 0.584

2 50 979 0.016 ,n.o48 989 -.126 0.492 956 -.263 0.514 979 -.575 0.L84 979 -.792 0.079
976 -. 115 0.486 952 -.26 0.513

2 75 996 -.025 0.522 998 -.125 0.432 974 -.247 0.475 996 -.341 0.174 996 -.790 0.065
996 -.124 0.431 972 -.246 0.474

2 tuO 99 -.. 9 0.437 0Ooo -. lot 0.381 989 -. 216 0.423 999 -. 508 0. 153 999 -. 785 0.05
100 -. 101 0.381 989 -. 216 0.423

1 6 '42 0.691 1.900 753 ).210 1.049 653 0. 119 1.03l 683 -. 513 0.348 64. -. 705 0.20:
636 0.39) 1.)40 573 0.245 1.038

, . 809 0.175 t.049 870 0.00) 0.757 769 -.096 0.745 810 -.469 0 .338 809 -. 725 ,0. 160
'16°804 0.074 0.740 731 -. 157 0.743

1 ) 9L6= .o75 ).766 935 -.012 0.618 864 -. L.2 0.66Z 916 -.404 0. 333 9t6 -.78 0.1 ,5
912 0.Cll 0.6109 851 -. 100 0.660

. 75 963 0.030 0.624 977 -.027 0.555 925 -.144 0.603 963 -.375 0.322 963 -.717 0.120
958 -.01) 0.546 923 -.. 142 0.603

.3 10 978 -. 28 0.513 989 -.075 0.47, 956 -.165 0.511 978 -.345 0.297 978 -.7L6 0.104
978 -.055 0.465 952 -.161 0.509

.Z 522 1.352 3.109 665 0.715 1.609 558 0.578 1.536 522 -.238 0.601 522 -.546 0..48
515 I.184 1.599 458 0.827 1.561

4 3 '7 0.58 .6o09 752 .366 1.118 669 0. 18) 1.026 674 -.199 0.576 674 -.584 u,28.
6o0 0.523 1.104 6q 1 0 286 1.02 9

j n 8'.'[ >.236 1.3; 8 0. 184 .869 756 0.tO5 :.86: 801 -. o- .541 801 -.61' 0.2
787 0. 27 0.850 722 ) 1 )0 u.958

J 89" 0.129 .. 1 1. 5 90. 112 0.728 - 0014 ').747 8" -.199 0.5.35 8": -2'8 o.2.
87S o. U . 715 a .1., 8 0.744

) . - .. 94 ).68; 0. ) )u ,. 23 -.,)64 1).666 8q -. 206 v.494 .89 -.644 . '

.p .66Z
V.. 9 ,.: .. = 5 e. :S )
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TABLE 3
"ICAS AND STANDARD DEVIATION(SD) OF ESTIMATORS OF SYSTEM RELIABILITf AT Tz.9085

MAXIMUM WEIGHTED METHOD OF
LIKELIHOOD LEAST SQUARES LEAST SQUARES MOMENTS BERGER S METHOD

A N M BIAS SD M BIAS SD M ---- BIAS SO M BIAS SD M BIAS SD

I 15 769 -. 4)1 :.(647 852 -. 0)(4 .0 036 7 62 0.002 .0589 770 0. f)37 .05 j 77(0 0. 464 . 04 63
766 -.006 .0577 715 0.002 .0586

' 0 916 -.005 0473 953 0.002 .0424 877 0.010 .0434 916 0.037 .0357 916 0.0)9 .05
912 0.001 .0426 857 0.009 .0434

2 30 979 -.001 .0372 989 0.003 .0349 956 O.OO .0359 979 0.035 .030') 979 1).0.)71 .1.233
9 6 0.003 .0348 952 0.010 .0359

2 75 996 0. 00 o 0290 998 o. 004 .0274 974 0.010 .0292 996 0.034 .0244 996 0.0)2 .0238
996 0.,03 .0274 972 0.010 .0293

2.too 999 ,. 001 .0243 1000 f.')04 .()'.4 989 0.011) .0248 999 (.0(34 .0223 ?99 0.-'15. .0216
999 o.004 0233 989 0.010 .0248

- 5 642 -.018 .0815 75' -. 010 .0767 653 -.Q06 .0748 64) 0.031 .0661 643 u.)67 .0616
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On Dependent Competing Risks

by
John P. Klein and Sukhoon Lee
Department of Statistics
The Ohio State University

Columbus. Ohio 43210 USA

I. Introduction

The problem of competing risks arises naturally in a number of contexts,

namely the modeling of series systems in reliability, the problem of estimation
with censored data and the analysis of physical or biological systems with
multiple failure modes. A common, untestable assumption is usually made that
the potential failure times for each risk are statistically independent (see

Basu and Klein (1982)). Moeschberger and Klein (1984) show that an investiga-
tion may be appreciably misled in modeling series systems reliability and in
estimating component parameters by incorrectly assuming independent component
lifetimes. In this paper we model dependence between components through a
common environmental effect on each component. Such a dependence structure
has also been suggested by Oakes (1982). Lindley and Singpurvalla (1985). and

Hutchinson (1981).

2. The Model

Consider a two-component system. Suppose that under ideal, controlled

conditions, as encountered in the testing stage, the times to failure of the
two components are X and Y . Urder these conditions, X0 Y are independent
with marginal survival functions, F and G0 . Now suppose the two components

are linked into a system and expose2 to the environment. The effect of the
e nvironment is to select a random factor, Z, from a distribution, H(z), which

z z
changes the marginal survival functions of the two components to F0  0

respectively. A value of Z less than one means that component reliability is
improved, while a value greater than one implies a joint degradation. In the

sequel we assume chat X0 and Y follow a Weibull distribution with parameters
0" 0 aX,

_L ( x and (a yy). That is, F 0(x) - exp(-A xx ). The resulting joint

r eLiability of the cwo components' lifetimes, (X.Y). in the operating environ-

menc is F(x.y) - E(exp(-Z(lxx + y ). F(x,y) is positive quadrant dependent.

Also E(X) - E(XE(ZL"'); V(X) E(X02)E(Z 2 / Qx ) -(E(XoE(Z-1/ax))2 and

iN" Cov(X,Y) - E(Xo)0(Y 0 ) Cov(Z1
/ %, 'L/.Y). The correlation is always positive

and is bounded above by r(l + 1/) 2/M( + 2/) when ax - at a. Explicit,

though Lengthy. formula for the moments of (X.Y). system a~d component
reliability, and system components can be obtained when Z is assumed to be
either a uniform or gammar random variables. The gams case leads to
bLvariate Burr distributions.

3. Estimation

The estimation of model parameters is carried out under the assumption

that Z has a gamma dLstribution with density h(z)z 
a L exp(-bs). Since the

Parameters 1 ' are not identifiable when only data from either a series or

/M AA
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parallel system is available, we incorporate sample information obtained
independently on each component under test conditions. Maximum likelihood

and method of moments estimators are obtained and their properties are studied

by Monte-Carlo methods since no closed form maximum likelihood estimates are
available.
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Resume

Un modIle pour les systemes dipendants dans l'analyse de la fiabiliti est

examine. Le modele suppose que, sous les conditions ideales, les temps de

survie des conscituancs du systiee ont des distributions Weibull indipendantes.

Sous des conditions d'opiration un facteur extirieur aliatoare affecce chaque

constituant simultandment en maultipliant son caux de hasard par une quancici

aliatoire. Lea proprLitis de ce modile ec l'estimacion des parametres du

modble sont considdris, I pairt des exemples concrets du laboratoire et de

la pratique.
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